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ABSTRACT

An analytical investigation was conducted to examine the applica-
bility of a method based on the Stokes potentials (vector and scalar
potentials) to computations associated with the aerodynamics of jets.
The principal merits of the method were found to he that the aero-
dynamic field near the nozzle could be well represented and that
the influence of a nonuniform velocity profile at the nozzle exit
plane could be explicitly determined. Other aspects of the computa-
tions indicated accuracy comparable with other methods but at the
expense of more complexity in the computations. An additional
benefit of the theory was that it provided the rationale for de-
veloping useful approximate analytical models for computations of
the type considered.

Computations were made for an axisymmetric jet exhausting into
a quiescent atmosphere for the purposes of exploring the computational
aspects of the method and for comparison with the available experimental
data and other theories. It was found that the velocity profile at
the exit of the nozzle and the integral moment of vorticity in the
jet flow were the most significant factors in the computations. The
latter is shown to be in agreement with the asymptotic form of the

theory. Those factors suggest that knowledge of the velocity at the
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exis of the jet, together with the location of the half-velocity points
along the jet are sufficient to yield reasonably accurate aerodynamic
ficld computations for the particular flowfield considered. Computa-
tions support that conclusion.

One of the approximate analytical models considered in the study
essentially replaced the jet floufield by a conical vortex sheet.
That model was the simplest considered and yielded accurate results.
It is, accordingly, recommended for computational purposes.

The comparison with experimental data showed agreement within
the scatter of the available data. The theory indicated clearly the
inconsistency among the different theoretical characterizations of

Jet flowfields, and suggests the need for more accurate relations.



I. INTRODUCTION

A number of problems in fluid mechanics involve the interaction
between viscous and inviscid flows. For most purposes, as in boundary
layer theory, the inviscid flow is determined without consideration
of the viscous flow region whereas the effects of the inviscid flow
on the flow in the viscous layer are considered. More recent interest
in the aerodynamics of jets, the "strong interaction" problems, separat-
ing and reattaching flows, etc., have placed more emphasis on the
mutual interactions of the two regions. Analytical models for such
flows are in various stages of development. One analytical method,
applicable to incompressible flows or for aerodynamic purposes,
based on the Stokes potentials (scalar and vector potentials), has not
yet received much attention.

It is the purpose of this investigation to examine the latter
method in the context of problems associated with the aerodynamics of
Jets. Such flows are of considerable significance in the aerodynamics
of V/STOL aircraft, the dispersion of pollutants, etc. Analytical
methods for handling them are not yet well developed. The emphasis
in this connection is on the influence of a turbulent Jjet in inducing
an aerodynamic flow. The flow in the turbulent jet is presumed known
either from experimental data or from other theoretical considerations.

As part of the investigation, the properties of the turbulent flow

ial in computing the aerodynamic fieid were evaluated.
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Asymptotic relations were developed to yield greater insight into the
method. In the interest of simplifying such computations, several
approximate models were examined. Numerical computations were made
for the case of an axisymmetric jet exhausting through a plane baffle
plate, serving to further classify the advantages and disadvantages of
the method.

The use of the scalar and vector potentials arises naturally from
the fundamental theorem of vector field theory. Most applications
have been associated with electromagnetic field theory; applications
in fluid mechanics have been rare. Since the concept is not familiar
to those with prime interests in fluid mechanics, a brief review of
the relevant aspects of vector field theory have been included in
the text.

The results of the investigation show that the method offers
unique advantages in the computation of the induced aerodynamic field,
particularly close to the origin of the jet. At more distant posi-
tions, the method yields results comparable to those obtained by other
less complicated methods. An additional benefit provided in the appli-
cation of the method is that it offers an independent means for com-
paring the consistency of different representations of the turbulent
jet flow. The examination of approximate models for the jet flow
showed that quite reasonable approximations for the induced aerodynamic
field could be obtained from knowledge of only the centerline velocity
and the positions of points in the jet at which the velocity is half
that on the axis,




IT. ANALYSIS

Since the basis for the analytical methods to be considered lies
in vector field theory, an introductory description of the relevant
elements of that theory is presented in the first part of this section.
The remaining parts of this section present discussions of solenoidal
fields, time dependent fields, axisymmetric fields, and Green's

function, respectively.

A. Vector Fie]d-Theory

1. Fundamental Theorem
Consider a vector field ﬁ (i) which depends upon the position X
in space. The field G may be uniquely defined in a simply connected
region 1 by specifying the divergence and curl of ﬁ throughout +

and the normal component of U on the surface S bounding the region 1.

1

A proof of uniqueness, following Lass™, is as follows: Let ? be

another vector field with divergence and curl equal to those of G,

-»> - -+ -» e . .
and with T * dS = U ° dS on S.* Select a vector Q which is the
<>

-> @+ > > .
vector difference between U and T, Q= U - T. This vector is

irrotational, solenoidal, and its scalar product with dg is zero.

*dS = n dS, where n is the unit outward normal vector of the surface
element, and dS is the differential surface element.



v-o@U-T)=vx@U-T)=(@W-T)-ds=0

The vector Q. since it is irrotational, may be represented in terms of

a scalar function ¢ such that
G=-vy

The solenoidal condition then yields

Applying Green's theorem in the first form yields

f[¢v2¢*(w)2]dr=f¢V¢-ds=f¢Q~ds=o
T S S

and therefore the volume integral of (V¢)2 is zero. Hence, V¢ = 0
-» -»> d
inside v, and Q =-v¢ = 0, so that U = T inside t. For an infinite domain,

->
the condition that U -0 as 1/R1 * €as R+ » with ¢ > 0 is requ‘lred.2

2. The Scalar and Vector Potentials
Explicit representation of the vector field in terms of the volume
distribution of its divergence and curl, and its normal component on
the surface may be obtained by introducing the Stokes potentials3.
normally called the scalar and vector potential of the field. Follow-

ing Morse and Feshbachd(a), let

. U, (X))
W(X) = -4 f_-l-;—-_-lg—-d 1)
ol |
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where R = |; - Iﬂ
X = the field point position vector
;1 = the source point position vector‘
drl = the volume element with respect to

integration over the source field
Refer to Fig. 1 for the geometry associated with this representation.
Equation (1) represents a solution of the vector Poisson equation

2 -+
v W=-U. Thus,

> 2-> -»> -»>

U=-VvV W==9(v-W+9x(vxW (2)
-

Equation (2) yields a representation of the vector field U in terms

of the negative gradient of a scalar and the curl of a vector. Let

-
m
<
=+

L J

(3)

and

> >
Az vx W (4)

17

: >
The scalar ¢ and the vector A are the scalar and vector potentials of
the vector field G, respectively. The general representation of a
vector field as the sum of an irrotational field and a solenoidal

field has been attributed to Helmho]tz.4(a) Denoting the irrotational

-+ >
field by UI and the solenoidal field by US’ then,
> > >
U= UI + US
-
where UI = -7 ¢
US =yxA
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Taking the divergence of Equation (1) with respect to the field

point coordinates X yields*

>
where the operator v is with respect to the field point X. Because of

the symmetry of R with respect to f and ;1’ however, one has
1, _ 1
vig)=-v i) (5)

where the operator " is with respect to the source point X Thus,

- 0o, 1
¢ = - I f”l " (R) dy
T

A > 1 15 1 > .
Noting the U1 2 (ﬁ) =9 - (R'Ul) -9 U1 and making use of the

1°

—

Gauss divergence theorem, the scalar potential may be finally written

v U, - do
v, - U :
1 1Y% 1 ] 1
¢‘T{f“‘—k d‘l‘ﬁ?f R (6)
T S

>
Equation (6) relates ¢ to the divergence of U in t and to the normal

>
component of U on S.

. >
*Variables with a subscript 1 denote evaluation at the source point Xl'

GE IS
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Taking the curl of Equation (1) yields

o 1

Using the identity, Equation (5), results in the expression

->=‘1 > 1

By employing the vector identity

Iy 1, _ 1 o o
levl (R-)=R'V1XU1‘V1X (R—)9

the integrand may be expressed in the form
U U
- vy, X
- .1 -1 1 1
A=-z j:vl"(k)"—_R dry

Making use of the appropriate vector integral theorem related to the

Gauss theorem, one has

-> -+

0, U x d§1
nxE)dy - ) T
T S

which yields, finally

; 1 vy X U1 oo 4 1 U1 X dS1
4 R LS B ) R
S

T

8

(7)



Equation (7) relates the vector potential to the curl of U throughout
1 and to the tangential components of U on 5.
Taking the negative gradient of Equation (G) with respect to the

=
field point X, and using the identity

-

1 R
v..:-..:.__
onc obtains
> ->
_ 1 .-» R J_ > .—» R
-Ve =t (v U1)-|§|—3—dr] T (Y, n-I)WdS] (8)

S

T

Equation (&) shows the irrotational field is related to the divergence
of G throughout t anc to the normal components of U on S.

Taking the curl of Equation (7) yields

> ->

1 1 -

> > R >
VXA—E (V]XU-I)X'lTR;I—a-dT]'*'Er— (U]XH])X

T S |§|3 dS] (9)
Equation (9) shows the solenoidal field is related to the curl of G
throughout + and to the tangential components of ﬁ on S.

Equations (6) and (7), and (8) and (9), respectively express
the potentials and the field values in terms of the volume distribution

of the divergence and curl of U and the components of U on the boundary

of the domain.

E IS
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3. Field Components on the Boundary

The representation given by Equations (8) and (9) does not
correspond with the statements made in Sec. II A 1. in the sense
that the surface integral in Equation (9) involves the tangential
components of.ﬁ on E rather than the normal components alone. It
may be shown, however, that the combination of the surface integrals
in Equations (8) and (9) give rise to a field that is irrotational
and solenoidal, so that specification of the divergence and curl of
the field throughout the region, together with only the normal compo-
nent of ﬁ on the surface of a simply connected region is sufficient
to define the field to within a constant vector.

To demonstrate the latter, consider the vector field to be repre-

sented by the sum of three velocity fields in the region v and on its

surface.
-»> <> -»> -»
U=uUp+ U + Ep (10)
where E
> _ 1 . >
Uie = & f(vl u;) K dr, (11)
T
> -+
U =4 (7, x Uy) X —R— dr (12)
St In 1 1 |;|§ 1
T
and
R ] > R
- - 1 > -> >
S S

Let the region exterior to r and extending to infinity contain no sources

->
for the field, that is, v - U =9 x U = 0 outside . Since the field




n

U in ¢ due to a given distribution of sources in space does not depend
oﬁ the particular choice of v, let a new domain t~“be defined to include
© and part of the region exterior to t. For any point in t, then,

the volume integrals yielding UIT and UST do not depend on the choice
for . Thus, the remaining fie]d‘Ep and therefore the surface
integrals which determine Ep must be independent of the choice of t7
Taking 1~ sufficiently large, the surface inteqgrals vanish subject to
the condition that U » 0 sufficiently fast2 as R > =, and so they
vanish identically. Thus, Ep = 0 for this case. For the general
situation, then, the surface integrals way be seen to represent the
contribution to U of all sources (v ° ﬁ, v X ﬁ) outside t. Invert-
ing the domains in the foregoing example, let v - E =V X U = 0

within 1, and non-zero in some bounded region exterior to t. Thus,

Ep is then solenoidal and irrotational within t and may be represented

by a harmonic function given in terms of its normal components over S,

> > >
v G (X, X]) U] dS] (14)
S .

=]
5] e
E

where G (i, }]) is Green's function of the second kind5 for ©. This
problem of finding a potential function, harmonic in a region 1,
bounded by a surface S, and having normal derivatives given on the
boundary is known as Neumann's problem. The general representation

of the field as given by Equation (10) is also described by Batche]or6(a).

B. Solenoidal Fields

Most of the discussion in the following section is concerned with

incompressible fiow, for which the divergence of the veiocity field is

ORIGINAL PAGE IS
OF POOR QUALITY
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sevo. Thus, the volume inteqral involving the divergence of the
source ficld taquation (11) for this case will be zero.  ihe velocity
field may then be expressed as
> >
u=1u

5y ¥ Ep (14)

Thus, the determination of a solenoidal field is completely determined
by evaluating a volume integral of the curl of the vector field and
then solving the appropriate problem in potential theory. It is this

problem that is of principal concern in the following sections.

C. _Time Dependent Fields
In many situations in fluid mechanics, time-varying phenomena
must be considered. Frequently, this phenomena is in the form of
turbulence. As long as one is not concerned with relativistic theory
and relativistic effects, time may be regarded merely as a parameter
of the vector field. For that case, all of the above relations are
valid for a time varying field U (i, t). Because of the linear char-
acter of the vector equations, the time averaged field is simply that
computed from the time averaged divergence, curl, and surface normal
components of the field. Stating this another way, the time averaged
field is that field computed from the divergence and curl of the time

averaged field and the surface normal components. Thus, time averaged

equations have the same form as the steady state equations.
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D. Axisymmetric Fields

For axisymmetric fields with no tangential component

> - >

U= Ur L UZ iz (cylindrical coordinates)
or

—l>l U.’ >

- . . .
o i U¢ 1¢ (spherical coordinates)
then
. 20U, al,

v xU-=( 57 " 5 ) io (cylindrical coordinates)

or
1,80 U¢ E)Up_,

7 x U= 5—( T T3 ) i (spherical coordinates)

and

ﬁ = Ix > + X + + + . > e -
= X e Xz ]zJ - [Xrl Tt Xs] To1 * X5 1zl]

(cylindrical coordinates)

| > ' 2 : >

{
[ 'S} ¢ ¢ p]

el]

(spherical coordinates)

The geometry of the fields are shown in Figs. 2 and 3. The coordinates
with subscript 1 correspond to a source point and the nonsubscripted

coordinates correspond to a field point.

E. Green's Function for a Semi-Infinite Domain

Assuming the divergence, the curl, and the normal component of a
.}
vector field U are specified within a given domain, it can be useful

to employ Green's function of the second kind to determine the

+
component of the vector field denoted by Ep (Equation 14). Since

B
ORIGINAL PAGE
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FIGURE 2. CYLINDRICAL COORDINATES

14



FIGURE 3. SPHERICAL COORDINATES
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-

Ep is irrotational it may be represented by the gradient of a scalar y.

Thus, it follows from Equation (14) that
'l > > -> >
S
2

with v° ¢y = 0 throughout the domain.
Consider a simply connected finite region t. To obtain the Green's

function for this region, the following vector function is used.
"’]V]ﬁ'%vq’l

where 2 is harmonic within the domain t. Express Green's theorem in

the second form

3y
Jori-i#we- [ k@ e,
T S

The volume integral involving v2 ¥y is zero. Solving the left side

of Equation (16) for field points within the region v, it follows that

<
1]

1 a 1, 1"
’nf(%"aﬁ‘ﬁ"ﬁsr) ds, (17)

<
]

since v2 1/R = 0 except at R = 0 where it takes on a value of - 4x.
Equation (17) appears to indicate, that to obtain a solution for y,
hoth " and a¢]/an must be known on the surface. This is contradictory
to Equation (14) which requires only the normal derivative (G] . dg]

= ;;1—ds]). It is possible to express the integrand of Equation (17)

in terms of a¢]/an alone.
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In accordance with the presentation by Ke]]oggs; consider a func-
tion Ht which is harmonic in t, and form the vector function ¥ vH
- H Vi, analogous to that shown above for H = 1/R. Thus, Green's

theorem in the second form for this vector function yields

=1 oH iAd!
0=~ e f (w] 'ﬁ - H -,r-)—n—' ) dS-I (]8)
S

Addition of Equations (17) and (18) yields

2] 3 1 MWy :
¢“H}[ Loy 57 (g + W) - 57 (g HID dSy. | (19)
C

The combined scalar (%-+ H) is called Green's function of the
second kind. The scalar potential may be eliminated from the
integrand by requiring that the normal derivative of Green's function
on the surface be zero.

The function H must differ from - 1/R, in general since H is
harmonic at all points within 1 whereas 1/R has a sinqularity within <.
L is -4n and the
surface integral of the normal derivative of the harmonic function H

It may be noted that the surface integral of %ﬁ

is zero. If 3H/an differs from - %ﬁ-%-by a constant at points on the

surface, the surface integral involving ¥ yields a constant. With

that choice for 3H/3n, Equation (19) provides a relation for y in

terms of aw]/an on the surface to within a constant. The determination
> >

of Green's function G (X, X]) then reduces to solving the following

problem.

G(x,_i,l) =]§+H (X, §,') (20)

EIS
RIGINAL PAG
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where H is a harmonic function in 1 satisfying the boundary conditions

2 1R (X, X:)
L LI, (21)
an

>3}

3]

on the surface of the domain where C is a constant.

As an example, consider the semi-infinite domain shown in Fig. 4.
The point ;] is the image with respect to the plane Z = 0 of the
source point';]. If H is given the harmonic value l/l; - ;]l, and

substituted into Equation (21), the results obtained are

9 1 2 1
Y 5" - — -—3—3—on S (22)
3n'r_[;| an r_-; 1
1 1
Thus
62—+ oL (23)
lr -l [r - Py

Note that the quantities I; - ;]I and I; - 3]| are equal whenever r,
is on Z = 0. The required Green's function for the semi-infinite
domain is then simply 2/R. For an infinite domain the appropriate
Green's function degenerates to 1/R. Green's functions for various

domains are discussed at length in Reference 4 (b).
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ITT. THE AERODYNAMIC FIELD OF A JET

Referring to Fig. 5, a jet exhausting into an airstream has the
property that most of the turbulent flow remains confined within a
relatively narrow, curved column. There generally will be a turbhulent
wake behind the jet, but for this discussion, it is convenient to
consider the entire flow field to be comprised of two parts: the

Jet flow, and the flow outside the jet, or the aerodynamic field.

The jet flow occupies that region containing any significant vorticity.
The vorticity in the aerodynamic field, then, is presumed to be neg-
ligible. Experimental data for jet flows support such a separation

of the flowfield based upon the absence or presence of vorticity7.

The vorticity within the jet flow will consist of streamuise components
as well as peripheral components, in general. The surface bounding

the two regions is not a streamtube because the turbulent mixing

action of the jet flow results in entrainment of air from the aero-
dynamic field.

Consider the simply connected region = containing a jet. The
velocity field U is uniquely defined by its divergence and curl
throughout the region and the normal component of J on the surface
bounding the region. For most purposes in aerodynamics, the field
may be presumed to be solenoidal (incompressib]e)*. This solenoidal

>
field U, as previously shown (Equation (15)), may then be expressed

-
The entire flowfield is here assumed to be incompressible, which
vould be a reasonable approximation for Tow-speed jets. For near
sonic or supersonic jets, this would be clearly untenable.
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as the sum of the two component fields

G-l vt
= UST + Ep (15)

The field UST depends on the distribution of vorticity throughout the
reqgion. llowever, the vorticity is confined to the jet flow. Thus,

hid

US{ is solely dependent upon the sources within the jet flow. The
remaining component field depends only on the distribution of the
normal component of G on the surface of the region.

It is possible to determine the aerodynamic field in two ways.
The first makes use of only the scalar potential, and the second
utilizes both a scalar and a vector potential. In the following
discussion, the symbol ¢ will be employed to denote the scalar potential
of the aerodynamic flow field when the field is completely determined
by only the scalar potential. The symbol ¢ will denote the scalar
potential for a flow field characterized by both a scalar and a vector

potential. In the latter situation, the scalar potential y alone does

not entirely characterize the flow field.

A. Method Cased on the Scalar Potential

Consider a domain chosen in such a way as to exclude the jet flow.
Refer to Fig. 6. The boundary (I) of the domain then contains the
surface of the jet flow as one of its parts. Since the aerodynamic
field within the domain is entirely irrotational and solenoidal, it
may be completely represented by the potential field component Ep of

-
Lquation (10). Recalling Equation (14), the relation for Ep is

-> 1 > -+ -+
Ep = - vG (X, X]) Uy - dS, (14)
S
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finy solution for Ep in the subject domain requires specification
of the normal component G] . dgl on the surface of the domain. For
most applications, such values may be obtained for the parts of the
surface not bounding the jet flow. For those parts of the surface
boundina the jet, values for 61 . dgl are available only with a rather

high degree of uncertainty, even for simple jet configurations. That
8

.

is true of data obtained either analytically or experimentally
Furthermore, even if the boundary conditions on the surface of the jet
could be obtained with acceptable accuracy, the solution of the potential
problem (either by evaluating Green's function for the domain, or by
alternate methods) remains complex except for problems with simple

symmetry.

B. Method Based on the Stokes Potentials

Consider a boundary (II) taken around the region containing
both the jet flow and the aerodynamic field (Fig. 6). This defines
a domain for which the velocity field G is represented by GST + Ep
since the vorticity within the jet flow is not zero. This choice
for the doamain eliminates the requirement for knowing the normal
component of 6 along the surface of the jet flow. In other words,
the surface of the jet flow is no longer a boundary of the domain.

The field in the region exterior to the jet flow is irrotational.
Thus, the volume integral for the determination of GSx in Equation (15)
is taken only over the region occupied by the jet flow.

The formulation of this problen is somewhat more involved than

the method of the scalar potential. Rewriting Equation (15), the
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>
relationship for U is

> > R 1 > e
U= 3}~.’. (v] X U]) X I?ﬁfr-drl - z;;l. vG (X, X]) U, - dS] (24)
T ) S

Now, the solution for GST involves the vorticity distribution
within the jet region. Certainly the distribution is not known with
precision for any turbulent jet. HNonetheless, the integral is the
value required rather than the vorticity distribution proper, so that
the uncertainty of the integrand may not be a serious problem in some
circums tances. That is, if the integrand is only approximated, it
may still be possible to obtain accurate values for the integral.
This will be considered in Section IV. As far as the evaluation of
the Green's function for the domain is concerned, there is more flexi-
Lility compared with the method in the preceding subsection. The
choice of the domain can be made in any convenient way without requir-
ing the boundary of the jet flow to be a part of the boundary of the

domain.

C. Vorticity in the Jet Flow

The vorticity distribution in a turbulent jet is strictly a time-
varying function. As noted in Sec. II, however, when only the time
averaged vector field is to be determined, specification of the time
averaged vorticity field and time averaged boundary conditions are
sufficient to determine the solenoidal field (Equation (15)). This
is due to the linearity of the vector field equations.

For most jets the principal tine-averaged vorticity component

is peripheral, or normal to the streammise direction of the jet flow.
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That is, the peripheral component of vortex lines form closed curves
about the axis of the jet. For a jet in a cross-flow, there will be

in addition, to this peripheral component, components of vorticity

in the streamwise direction along the jet. The vorticity lines, re-
sulting from the peripheral and streanwise components, will then be of a
helical character. It is advantageous, for the purposes of discussion
and for computations as well, to consider the vorticity field as
separated into the sum of peripheral components and a streamwise
component. Thus, for the vorticity field 5],
, = up +Q (25)

where Ep is the peripheral component and lies in a surface normal to
the streamwise direction, and 52 is the streamwise component.

The magnitude of the peripheral component of vorticity in the jet
flow has a distribution such as that illustrated in Fig. 7. The
vorticity on the axis of the jet is zero, and the vorticity approaches
zero asymptotically near the edge of the jet. Maximum values of
vorticity are reached at positions between the axis and the edge of
the jet flow.

Computations of the aerodynamic field induced by a jet by means
of Equation (15) requires specification of the vorticity throughout
the jet flow region. As mentioned before, precise data for the vorti-
city are not available, either from experimental data, or from analyt-
ical relations, even for jet flows of the simplest symmetry. However,
there is not actually a need for precise vorticity data to obtain

reasonably accurate data for the aerodynamic field, because only an
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inteqral of the vorticity is involved in the coriputations. It is then
possible to obtain acceptable approximations for the computation of

the aerodynamic field if only certain integral properties of the vorti-
city distribution are known, that is, providing the field points of
interest are not close to the surface of the jet. At field points
extremely close to the jet, of course, more accurate data become
necessary.

When field points are sufficiently far from the jet flow region,
the value of {al in Equation (12) does not vary much over a cross
section of the jet flow. The integral, then, can be reduced in an
approximate way to a simpler relation involving only the integral
of the vorticity and itsmoments over finite volume elements of the
Jet flow. This approximation leads to useful computational simplifi-
cations. For some problems, the integral of the vorticity for the
reqion can be related to data for the jet flow that is known with
considerable accuracy. Aerodynamic computations for such jet flows
employing these methods might be expected to be of comparable or
higher accuracy than computations previously made with other methods.

To illustrate the foregoing remarks, consider the contribution
to the velocity at a field point X due to the vorticity within a small
section of the jet flow. Refer to Fig. 8. The dimensions of the
scction of the jet flow under consideration are presumed to be small
in comparison with the distance from the element to the field point.
The section is a plane slice of the jet flow field of infinitesimal
thicknesS. The extension to finite elements of the jet flow will be

considered later.
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Equation (12) may be expressed in the form

no- 1 > 1

T

. . . > . 6(b)
Expanding 1/R as a Taylor's series in X], yields

2
1 _ 1 ) 1 1 3 1y ...
IENERS ALIER AL RS R TL Iy sy 5

>

where X = |X|
The subscripts denote components and the summation convention is

implied. If only the first and second terms are retained, then in

vector form

1 21 ; 1
FI Ty Ay

Substituting for 1/R in Equation (26), yields the approximate equation

P VN > | 1
UST--I“—fQ]X (V‘X--X] V(VY)]dT]
T
>
Since X is not a function of the source coordinates, X], this equation

can be expressed as
b ¥l g1, ay dry + 1 2y x|X, - v (v Dld (27)
St T 'YX 19 7 1y 1 1 X191

T T

However, the integral of the first term can be expressed as

T T T

e
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From the divergence theorem, then
> > >
V] . (A]i Q]) dr] = X]i Q] . dS] (28)
T S

Considering Equation (28) and the expression for the vorticity

in Equation (25), yields for the integrand of Equation (28)

Xps @r - dS. = 0 X (B +3) - & 29
IERA TR 1 (8 +9) - dSy (29)
S S

>
[t can be concluded that since Qp is everywhere tangent to the surface
S of the element then the contribution from the peripheral component
of vorticity in Equation (29) is zero. If the streamwise component

-)
of vorticity, ., is non-zero, then the first term of Equation (27)

%?v;—xfnldr]="v]7xf§zdr] (30)
T T

Since the first term yields no contribution of the peripheral

yields

.>r~

component to'GST, the second term of Equation (27) must be used to
evaluate its contribution. Likewise, if the integral of the stream-
wise component in the first term is also zero, then the higher-order
approximation must be obtained, using the second term of Equation (27).
Consider now the case where the vorticity is entirely peripheral,
0 = 0. The first integral in Equation (27) is zero. The expression

z
for GST in Equation (27), using the vector identity

-+ > >
v x (¢A) = ¢v x A+ (vp) x A
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then becomes

<>

1 oy o]
“sr"iru“”‘f R I (31)
T

Rewriting the dyadic Q] X] in the integrand in terms of skew-symmetric

and symmetric parts, yields for the integral in Equation (31)

& X v lar =] @ X, -9l _X a v Ly g
1M X"1°2 1M X 11 X 1
T

T

Xy 0y T dny

+
N| =t
- .
——
ol 4
—
> ¥
-—d
<
><| —

and since

f(xn Mgt Ky ) 4y s fv C Xy Ky ) dy =0
T T

only the first integral (skew-symmetric part) contributes to ﬁST in

this case. Using the vector identity

-

B (C-A) - A (C'B) = - C x (Ax B)

the skew-symmetric integral can be written as
] 1 M
-2~(V Y) X (X] xQ]) dr]
T

Substituting this value for the integral in Equation (31) and using

the vector identities




33

5> >

> > s S S > >
Ux (A x B) =B-VA - AV + AV+b - BY-A

>

> > > > -» . > -> >
v (A*B) = AvB + B-YA + Ax (vx B) + Bx (Vv x A)

finally yields,

i, g_[< be [H dT]] (32

T

ne

Equation (32) shows that for the conditions considered, that of peri-
pheral vorticity only, the significant term remaining involves only

the integral of the moment }] X 5], over the volume element of the jet.
It is possible to relate the latter integral to the circulation about

a vortex ring or an element of a vortex sheet, and then to the velocity
in_the jet flow. If one considers the more general case for v| v ;--
.’f (;1 X ;]) dr] it is possible to relate this term to either a com-
bi;ation of a source doublet and a vortex doublet.

For computational purposes, it is possible to replace the volume
distribution of vorticity in the element of the jet by a discrete,
closed line vortex of appropriate properties. The properties of the
line vortex corresponding to the volume distribution of vorticity may

be evaluated as follows.

For a plane closed curve C, the line integral

> 'I > >
Al =7 X] X dX] (33)

yields a vector normal to the surface of a magnitude equal to the area
enclosed by the curve C (Fig. 9). The circulation, r, is defined as
the line inteqral of U] around a closed curve C bounding an arbitrary
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surface in the flow. Thus

ro= fu "
e 1

where di] is an element of the curve. By employing Stoke's theorem the
relation between circulation and vorticity may be expressed as
T
A ay dS] = . U] . dL] =T (34)
vhere the surface integral is over the surface bounded by the curve C.
Considering one-half times the integral of Equation (32) and using
Equations (33) and (34), yields for a closed ring vortex in the plane

normal to the axis of the jet.

] > -»> _ 'l > -»> -+
T T

where the surface element dS] is that of the cross section of the vortex
ring and dX] denoteé the differential 1ine element along the vortex ring.

- The above expression may be written

] > ¥ -» . i _ >
5 I (X; x dX;) fszp ndSy =T A
C S

where Jp is the vorticity of the closed ring vortex in the direction
dil and A] is the area enclosed by the ring. by considering a series
of vortex rings along the axis of the jet, an element of a vortex sheet
is obtained.

Considering finally v[v %.. .I. (;] X ;]) dT]] and letting the
integral term be represented by 5, ygelds

(ﬁiﬂ?ﬂﬂAl;I#USFils
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s =k @1+ @ o)X

1 - ,
v(vg - m)= (m - v)
X X X3 X

and expanding the above, results in an expression for the field of a

dipole sinqularity.

> > >
v(y ;l( . _ITI): - lx__é_x_.__‘ﬂ +
X

> (3
wl

Thus, Equation (32) can also be expressed as a velocity field induced
k3 —* - ‘} -4)
by a dipole of strength m equal to the integral of the noment X] X Qq-
The streanwise component of vorticity 52 is more difficult to
treat analytically, but the following might be noted. Considering the
first order approximation expressed by Equation (30), this yields for

an equivalent line vortex

o B | X
X .I:zz dr] =F VXX .‘.dX]
T

where di] is a vector element of the line vortex. When 1 is zero (no

><| —

]
ZWV

>
net rotation of the jet), the second term involving @, in Lquation (27)
must be considered. By analogy with the foreqoing for ;p’ it may be
anticipated that the contribution will be equivalent to that of a

vortex doublet.

A11 of the above approximations are for large R. As previously

stated, more accurate approximations may be required for points of
the aerodynamic field close to the jet flow. The foregoing approxi-
mations provide insight into the nature of the analysis, as will be

shown in the following sections.
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IV.  THE AXISYMMETRIC JET IN A QUIESCENT ATMOSPHERE

As an application of the methods discussed in the foregoing sections,
the most elementary situation with regard to jet flows is that of the
axisymmetric jet exhausting into a quiescent environment. The vorticity
in a jet of that type is entirely peripheral. MNo streamwise vorticity
is present, except in the turbulent motion of the fluid. Since only
the time averaged properties of the flow field are of significance in
computations of the steady aerodynamic field, turbulent fluctuations
do not enter the computations. Before examining the computational
aspects of determining the induced aerodynamic field, the nature of
an axisyrmetric jet is briefly reviewed bélow. A synopsis of some of
the literature pertinent to such jets is included in Appendix A.

N turbulent jet exhausting into a quiescent atmosphere is generally
considered to comprise three regions (Fig. 10). Region I, the potential
core region, is characterized by a central region of uniform "potential
flow,"* separated from the aerodynamic field by a turbulent mixing layer.
The mixing layer grows in thickness downstream from the lip of the

nozzle. At the end of the potential core region the inner boundary of

*

Such a characterization presumes the dominant flow from the nozzle is
essentially uniform. There will always be boundary layers present
adjacent to the wall. In some situations, the flow from the nozzle
might have the appearance of a fully developed turbulent pire flow.
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the mixing layer reaches the axis. The growth of the mixing layer is
observed to be approximately linear and the velocity profiles, as a
function of a radial difference normalized with respect to the width
of the mixing layer, exhibit similarity.g(a) At some point downstream
from the end of Region I, the flow becomes developed in the sense that
the radial profiles of axial velocity exhibit similarity (Region III).
That is, the radial distribution of velocity, normalized with respect
to the velocity at the centerline of the jet becomes a function of
r/r, only. The radius ry, is the radius at which the velocity is half
that at the axis of the jet. In Region III, r, increases linearly with
distance in the downstream directfon. The velocity at the centerline
decreases as 1/Z where Z is the streamwise coordinate along the jet.
Region II, between Regions I and III, termed the transition region,
has been found to exhibit non-similar velocity profiles. The decay

of the centerline velocity begins in the transition region. For

most purposes, the transition region may be considered to be rather
short, on the order of 2 nozzle diameters in length.

The boundary of the jet flow, introduced in Sec. I1I, was defined
to enclose the region containing significant time-averaged vorticity.
The instantaneous position of a jet surface has the appearance shown
in Fig. 10. The jet surface separates regions of irrotational fluid

from those of turbulent, rotational fluid. The above definition of

the jet boundary, then, would be a surface enclosing the extreme positions

of the instantaneous surface of the jet flow.
The mass rate of flow, associated with the jet flow, increases in

the downstream direction. Thus, the boundary of the jet flow is not
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a streamtube since fluid from the environment crosses the boundary to
become entrained in the jet flow. In the developed flow region of an
axisymmetric jet, the rate of increase of the mass flow rate per unit
length along the jet becomes constant. This rate of increase in the

mass rate of flow in the jet per unit length of the jet is termed the
mass entrainment rate, Em. The mass entrainment rate is simply related
to the normal component of velocity at points on the boundary of the

Jet. For an axisymmetric jet, the mass entrainnent rate may be expressed
as

Em = 2n ro Un o]

where L is the radius of the boundary and Un is the component of
velocity normal to the boundary and directed inward toward the jet
axis. Recalling that the boundary conditions required for determining
the aerodynamic field by means of the scalar potential (Sec. IIIA) in-
volved specification of the normal component of velocity on the bound-
ary of the jet flow, it is apparent that those boundary conditions
are equivalent to specification of the Em.

Now, as noted in Sec. IIIA, Em is known for jet flows only with
a rather high degree of uncertainty. That is true from both analytical

10 examined

and experimental viewpoints. For example, Ricou and Spalding
the available data and analytical relations finding that if the entrain-

ment were expressed as

E, = Ky /Mo (35)

where M is the momentum flux and p the mass density of the jet fluid,

then values for K] were found to range from 0.22 to 0.404. Experiments




M

10

by Ricou and Spalding ™ to obtain the value of the entrainment rate

yielded a value of 0.282 for the mixing of an air jet with air. On

the other hand Hygnanskil]

has found the higher value for K], corres-
ponding to the Schlichting profile, of 0.404 yielded agreement with

data he obtained. Other studies appear to show similar uncertainties

in the entrainment rate.8

Such uncertainties might be expected because
of the sensitivity of the entrainment to regions of the jet near its
edge, where measurements are difficult to obtain with accuracy and
where theoretical relations there may not be expected to be accurate,
that is, at least in the boundary layer approximation.

From the foregoing remarks, it is apparent that however accurately
the geometry of the problem of computing the aerodynamic field may be
treated, the boundary conditions are known only with a high degree of
uncertainty for methods based on the use of the scalar potential alone.
The following discussion, then, is concerned with similar computations
based on the use of the Stokes potentials. The use of the Stokes
potentials for the computation involves data for the jet flow known
with higher accuracy. Thus, its use might be expected to yield more

accurate results under some conditions.

A. Formulation of the Problem

Consider an axisymmetric, incompressible, turbulent jet exhausting
normally through an infinite plane baffle plate into a quiescent
atmosphere. U is uniquely defined in the semi-infinite, simply connected
region ¢t by specifying the curl of ﬁ throughout t and the normal compo-
nent of ﬁ on the surface S bounding the region . Since the time-

averaged flow is assumed to be axisymmetric and without swiriing action,
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the vorticity has only one component it (cylindrical coordinates), as
shown in Sec. IID. The vorticity is solely peripheral. This implies
that the aerodynamic field is also axisymmetric with only r and z
components. The entire domain of vorticity will be assuned to be that
of the mixing region around the potential core and of the fully
developed region of the jet flow. The transition region of the jet
flow is not considered separately in this formulation. That is, the
fully developed part of the jet flow is simply presumed to start at
the end of the potential core.

As discussed in Sec. II the aerodynamic velocity field may be
separated into the sum of two fields UST and Ep. The boundary condi-
tions to be satisfied for the domain are that the normal velocity
component on the plane baffle plate be zero; it will be presumed that
the normal velocity component at points of the plane within the cir-
cumference of the jet orifice is uniform and equal to Uj’ the jet
velocity. The velocity at distant points approaching infinity must,
of course, approach zero. The simplest means for satisfying those
boundary conditions for this problem is to use the method of images.
An image of the jet flow is placed along the negative Z axis. Con-
tributions to the normal component of velocity at the baffle plane due
to GST for the sum of the jet flow and its image thus vanish. The

>
normal boundary condition remains to be satisfied by the Ep field*.

*Strictly speakjng, to be consistent with the discussion of Sec. III, one
should regard as the sum of the contributions of the image of the re-
gion of vortic1gy plus the E p field actually considered, for the semi-
infinite domain. There is no fundamental difference involved, however,
so there should be no confusion in the matter.
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The normal component of [p is zero at points in the baffle plane outside
the circumference of the jet orifice, and Uj at points in the plane
within the circumference of the jet orifice.

The aerodynamic velocity field U for the axisymmetric jet has two
components (r and z) in cylindrical coordinates. Recalling Equations
(12) and (15) the contributions to the r and z components of B due to

the vorticity in the jet flow GST may be expressed as

1 (z-z])
USTr = K;-.I. cos 6y Q4 —Eg——- g dr] dz] de] (36)
T
) (r]-r cos 0])
USTZ = - 204 R3 " dr] dz] do] (37)

where the notation corresponds with that for cylindrical coordinates
discussed in Sec. IID. The nonsubscripted variables refer to the field
point i, and the subscript 1 denotes values evaluated at the source
point ;1. The geometry associated with the Equations (36) and (37) is
illustrated in Fig. 11. A small segment of the jet is shown in Fig. 11
as a truncated cone. The integrals of Equations (36) and (37) are
taken over the points within the jet flow and its image. The value R
in Equations (36) and (37) indicates the magnitude of ﬁ = i - I], as
shown in Fig. 11.

The irrotational and solenoidal part of ﬂ, denoted by Ep, satisfies
the boundary conditions for the semi-infinite domain and is represented

by Equation (14). For the present application, the equations may be

written in component form as follows.

u. (r-ry cos 6,)
S

pr 2n R3
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(Z'Z])
f———g— " dr1 de, (39)
S

where the notation corresponds to that previously discussed. The
geometry for Equations (38) and (39) is shown in Fig. 12. The surface S

surrounding the domain consists of an infinite plane at z = 0 and the

1

remaining surrounding surface at infinity. The normal component of
velocity along the boundary is zero except at the orifice. At points

in the plane within the orifice circumference the normal component of
velocity is presumed to be uniform with the magnitude Uj, the exit
velocity of the jet. Thus, the only surface contributing to the surface
integral is a flat disk of radius rj, the exit radius of the jet orifice.

Integrating over the 8, direction and recalling that Qg7 1s indepen-

dent of 61» the above equations can be written as follows.

US i} %ﬁ,.l. QO] (z-z]) r2 + ri + (Z-Z])z
B S »/(r + r'.l)2 * (z-z, )2 (r-ry)” + (2-z)
E (k) - K (k) dr] dz] (40)
2.2 4 ()0 )2
U = - > o1 ot ) E(k) - K(k)|dr, dz, (41)
12 2n 5 > 2 o 1 1
s Arer) )4 (2202 |(r-r))24(2-2,)

2 f_zz

: ) Ei-.l. r] r-r
pr =
. ,/(r+r])2 + 22 (r—r])2 + z2

E(k) + K(k)| dry (42)
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2 U z E (k)

E dr 43
. /(r+r])2+z [(r-r)? + 2°] n (43)

where K (k) is a complete elliptic integral of the first kind and E (k)
is a complete elliptic integra] of the second kind. Derivations of
Equations (40), (41), (42), and (43) are presented in Appendix B. Note
that the integrals in Equations (40) through (43) involve integration

only over the r] and 2 coordinates in the jet flow.

B. Numerical Method

The integrals in Equations (40) through (43) may be evaluated
numerically. For the purpose of numerical integration, it is convenient
to transform the variables of integration in such a way that the domains
of integration become rectangular. This may be accomplished in the
following manner. Denote the inner radius of the mixing layer in the
potential core region by ' and the outer radius of the jet by o
The geometry for the jet flow is shown in Fig. 13a.

Introduce the transformation for the coordinates (r], z]) in the

mixing layer of the potential core region to the transformed variables

(X], YI)-
Xy = (rl'rll)/(ro] rI]) i)
Nn- z]/rj

where rI] = rI (Z])s

o (z]), and
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rj = the radius of the jet orifice

For the developed region of the jet, the transformation from

(r], 21) to (x}, yl) employed is as follows.

150"

(45)
Y1 * z]/rj

The notation corresponds to that described above. The coordinates for

the surface integration over the orifice area in the plane 2y = 0, let

Xq = r]/rj
(46)
Y12 =0
Finally, for the field point coordinates, introduce the transformation

from (r, z) to (x, y) as follows.

b3
[}

r/r0 (z)

(47)

z/rj

<
]

The transformations (44), (46), (46), and (47) transform the original
domain in the (r, z) plane to the rectangular domain in the (x, y) plane
as shown in Fig. 13. Regfon 1 is the mixing region surrounding the core.
The fully developed jet flow is represented by region 2. It should be
noted that the region of integration in the Xy direction extends only
from 0 to + «. The region of integration in the ¥ direction contains,
in addition to the interval (0, + =), the region of integration over the

image from 0 to -o,
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It is convenient, in addition, to normalize the velocity components
with respect to Uj, and the vorticity component with respect to Uj/rj.

Thus, the appropriate relations are

Ux = U51r/Uj Ex = Epr/Uj
Uy = USTZ/Uj Ey = EpZ/Uj > (48)
= Qnrj/uj 1= Uj/Uj J

Substituting the relations (44) to (48) into Equations (40) through

(43) yields the following equations.

(Fo17ryy) @ (yy-y)

rj j.sl
Uu = -
X X
° ~» W //{ro

X+ [rgy-ryp) xp + r”]}z + r? (y-y;)

S o+ [(roy=ry) %y + 1y 22+ "§ (y-y;)?

{“o" ‘[(rol‘;‘xl )-"‘1 + ’11]}2 * "§ (y-yq)

o1 & (¥9-y)

r o 1
: S j
T2 rx
0 2, 2 2
- 0/(rox + rqlx,) try y-y)

2 2 2 2 2
o X+ roxy + "y (y-¥,

(rox-ro]x.l)2 + r? (,y-y-|

)2
)2 E (k2) - K (kz) dx] dy] (49)*

*The integration is to be performed over the jet flow (0 to «) and its
image (0 to -=). It should be noted that ¥y 1s replaced by -¥; and @
is replaced by -q for the image integration.
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5 S o /fe L :

x + [(r 1-r])+rﬂ} *r (y-yy

22 o 2, 2 2
" = Lrgyrp) Xy # v 10+ vy (vyg)

—_— - E (ky) - K (ky)| dx; dy
{rox b [(rol—rll) X * r”]}z * r? (_y-y1)2 ] ] v

] w 1 Y‘ol f
o /i 2, 2 2
- Y0/ (rx 4 e x4y (yyy)

2.2 2
oX ]xf + r (y"yl)z :
E (k,) - K (k,) dx, dy (50)*
(rox-rq x]) + rj (y-y1)2 2 2 1
2 1 22 22 .2 2
. - _J_ S Xy roX TiXyry ¥
fo* 0/r'x+rx])2+r2y (rxrx])2+r'§y2
E (k3) + K (k3) dx] (51)
3 pl
r 2 Xqy E (kq)
Ey=i ! 3 dx, (52)

n
2 2 2 2 2 2
0/(rox + rjx]) + r‘j y [(rox rjx]) + rJ. y°]
where for Equations (49) and (50) the first integrals on the right side

are taken over the core region and the second integrals are taken over

*The integration is to be performed over the jet flow (0 to =) and its
image (0 to -=). It should be noted that y, is replaced by - yy and @
is replaced by -q for the image integration.
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the developed region. The modulj k], k2 and k3 for the complete elliptic

integral functions are

4 rx Llrgy-rp) xy + rnd

2
ky = (53)
1 v
{rox *Lrgymrpy) %+ rnJ}T+ rJz. (y-y1)2
k2 4 roX ro] X ”
= - 5
2
(rox + ro,x]37'+ r§ (y-y])z
4 rxr, x
K2 = Y (55)

2
(rox try X))+ 5y

It should be noted that the transformations employed do not strictly
lead to the integrals in Equations (49) and (50) because the trans-
formed coordinates are not orthogonal. Nonetheless, the error involved
in the approximation of the differential surface element can be shown
to be of negligible order because of the small spreading angles of the
jet. Numerical integration of the equations by this method and by a
different method not involving a transformation of the domain yielded
fdentical results to four significant figures.

For the purposes of numerical computation, the numerical algorithms
for evaluating the complete elliptic integrals were taken from refer-
ences 12, 13, and 14. Those algorithms were found to be compact and
of demonstrated accuracy to six significant figures. The algorithms are

listed in Appendix C.
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The integrals in Equations (49) and (50) are of the form

A= I f (xy0 ) dx dy, - (56)

S | B

where the variables (x, y) not entering the integration process are
| suppressed for convenience of notation. The method of integration
adopted for the mnri‘cal evaluation of the integrals employed the
trapezoidal rule for double 1nugr_als~‘s. The algorithm may be obtained
as follows. Llet f (x'. y‘) be locally approximated by the relation )

flyyon)2atsy, +yx+tsxy | (57)

fn 2 rectangular cl.nnt. of.m domain of dimensions a and b (Refer to
Fig. 13). Assume for the purpose of discussion that the origin of
coordinates is at tln'» Tower left cormer of the element and define the
functions f,, 1y, fae and £, a3 follows. |

3

f, = f (0, 0) f, = f (0, b)
fonf ),V T b (58)
-f‘ s f (l. 0). f3 = f (a, b)
The coefficients in Equation (57) may then be expressed in terws of
these values.
a= fb | o Y® (f1'f0)/l

~ Evaluation of the integral in Equation (56) then results in the algorithm
R USRS

where | denotes the mﬁal approximation for A over the small

ciemental surface consideved.
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The integrals in Equations (51) and (52) involve integration with
respect to a single variable. The trapezoidal rule was adopted for

the numerical integration of those integrals. For an integral of the

A = fg () dxq

the numerical algorithm for a small increment of length a may be written

form

I' = 3 (g5 + 9p)
where 99 = 9 (0) and 9y = g (a), taking the origin arbitrarily at 0
for the purpose of discussion as before.

The integration method employing thg trapezoidal rule,‘e1ther for
single or double integrals, is of second’order, ;he error decreasfng
as h2 where h is a chafacter1§tic size of the e]gment_of tpe domainjs, o
More precisely,

2 2

A-1=¢= ¢ a + ¢, b

for the double integrals, and

2
0 2
for the single integrals. This second order behavior of the method has

A - I'=¢' =¢

been found to hold in the computations made in this study, as evidenced
by the changes in the solution occurring when the grid size was succes-
sively halved.

The division of the different regions into a network of elemental
areas was as follows. For the mixing layer of the potential core region
(first integrals in Equations (49) and (50), a square grid was chosen

in the X1 ¥y plane. For the fully developed region (second integrals
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in Equations (49) and (50), a rectangular grid with aspect ratfo of 10
was chosen, with the longer dimension in the streamwise direction.
Computations for the fully developed region employing aspect ratfos

of 5 and 2.5 were also made and compared with the aspect ratio of 10.

These comparisons showed identical results to three significant figures.

C. Computations for Selected Vorticity Distributions

Several theoretical jet velocity profiles were selected for the
purpose of comparing the aerodynamic fields computed according to the
foregoing method. For the mixing layer around the potential core,
the relations suggested by Squire and Trouncer® (cosine distribution)
and that of Abramovichg(a) were employed. For the developed region
of the jet, the velocity profiles selected were those of (a) Squire and
Trouncer]6, (b) Schlichting]7£a3nd (c) the Gaussian distribution]B.

The vorticity distributions employed were determined by differentiation of
radial distributions of the axial velocity. Contributions to the
vorticity due to the radial velocity component can be shown to be
negligible.* Computations were made to determine the radial and axial
velocity components and values for the pressure coefficient, Cp, at

points along the plane baffle plate and at a series of points in the

aerodynamic field away from the baffle plate for each of the representa-

tive velocity profiles.

*For example, the contribution to the vorticity from the radial velocity
component of the Schlichting profile is less than 1 percent at ry/ry <
1.2. The contribution increases to 4 percent for 2.8 < r/r, < 5 2*and
decreases to less than 2 percent at r']/r'!5 = 4.0.

(s
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In addition to the above computations, computations were made
for the Squire and Trouncer profiles (both that for the potential core
and that for the fully developed region) to evaluate the sensitivity
of the aerodynamic field to contributions from various regions of the
jet flow. For example, the contributions of different axial elements
of the vorticity in the jet flow were separately evaluated to deter-
mine the range of integration in the axial direction necessary to
obtain accurate values for the velocity components at the field points.
A separate tabulation of the contributions from different regions in
the jet flow was made to indicate those regions making the largest
contributions.

The contributions to ﬁ due to the irrotational and solenoidal
part of the field, Ep. were the same for all the jet velocity profiles
evaluated. A uniform velocity distribution over the area of the jet
nozzle was employed in determining the Ep field. To evaluate the
influence of nonuniformities in the ve]ocity'prof11e at the nozzle
exit plane, several nonuniform profiles chosen to yield the same mass
rate of flow were examined.

1. Vorticity Distributions Corresponding to
the Selected Velocity Profiles
a. Mixing Layer of the Potential Core Region. The two velocity

profiles considered for the mixing layer around the potential core were

u.
U,y = 71-[1 - cos m n] [Squire and Trouncer] (59)

Uy = Uy [n-Q- n3/2)2] [Abramovich] (60)
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where n = (r, - r)/(r, - r;) and rp <r <r, Evaluating the vorticity

distributions corresponding to Equations (59) and (60), neglecting the

contribution to the peripheral component of vorticity due to the term

t) “rl”v Zy5 yields

n U

Ry = = 7_1731:—737- sin » n [Squire and Trouncer] (61)

3 Uj (1 - n3/2) n]/2
21 = - (ro — rij— [Abramovich] (62)

and

For the geometry of the core region, a core length of 12 rJ was
used as suggested in Ref. 19. For this core length and assuming " is
a straight line, an angle of spread of 4.8° for rp was obtained. Apply-
ing the relation for the conservation of linear momentum to the jet
between the exit of the nozzle and the end of the core region yields

o

2 2 _ 2

Uj n rj =2 n.l. Uz] ! dr]
0

Substituting the value of Upy from Equation (59) into the above rela-
tion results in an angle of spread for "o of 6.7°.

The results of computations for the radial and axial velocity
components at a series of points in the aerodynamic field are pre-
sented in Tables 1 and 2. The values shown in Tables 1 and 2 were
determined for the vorticity distributions of Equations (61) and (62)
respectively. The values in Tables 1 and 2 for Ugﬂ,/uj and Ugrz/uj

¢

are for convenience denoted by Uf and Qy respectively. They represent

only the parts of the total velocity components (normalized by Uj) of
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TABLE 1. FIELD POINT VELOCITIES - CONTRIBUTIONS FROM
THE MIXING LAYER OF THE POTENTIAL CORE
[SQUIRE AND TROUNCER (COSINE) VELOCITY DISTRIBUTION]*
y_= 0 ro/rj = ] y =12 ro/lr-\j = 2.42
o C o C
vﬁ_, Ux Qy X Ux Uy
1.1 -7532.0 0 1.1 658.8 -96.08
2 -1477.0 0 2 146.3 -47.46
4 -356.6 0 4 20.27 -19.70
12 -30.1 0 12 -0.5179 -1.152
20 -6.427 0 20 -0.1675 -0.1475
= . o= . = . = .8
L~31,_24 r /rJ 4.62 y = 36 ro/rJ 6.83
C C C o
. U Y X Ux 4%
1.1 6.235 10.57 1.1 0.8499 1.724
2 6.359 4,780 2 1.007 .9480
4 0.2415 -0.2443 4 0.4950 0.01292
12 -0.02591 -0.09729 12 -0.00455 -0.02083
20 ~0.01222 -0.01218 20 -0.002530 -0.002620
* = 7/r. X = r/r vt = (u. su.) s = (u. /v,
J 0 X Srr/ J y Sz’ 7§

A1l tabular velocity ratios have been multiplied by a factor of 104.
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.TABLE 2. FIELD POINT VELOCITIES - CONTRIBUTIONS FROM
THE MIXING LAYER OF THE POTENTIAL CORE REGION
(ABRAMOVICH VELOCITY DISTRIBUTION)*

y=0 ro/rj = 1 y =12 r‘o/rJ = 2.42
C C C C
X Ux Uy X Ux Uy
1.1 -7595 0 1.1 797.7 -127.1
2 -1514 0 2 168.1 -58.01
4 -378.1 0 4 22.64 . =22.74
12 -33.55 0 12 .5898 -1.304
20 -7.242 0 20 -.1900 =, 1671
y = 24 rO/rj = 4,62 y = 36 ro/rj = 6.83
C C c c
X Ux Uy X Ux Uy
1.1 7.128 12.05 1.1 .9659 1.960
2 7.256 5.432 2 1.147 1.073
4 2.742 -.28539 4 .5591 .01210
12 -.02946 -.1103 12 -.00521 -.02344
20 -.01386 -.01382 20 -.00285 -.00294
*y = 7/r x=r/r UC=U U, UC=U /U,
y j 0 X Srr/ J y Stz 7

A1l tabular velocity ratios have been multiplied by a factor of 104.
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the aerodynamic field due to the integration over the vorticity distri-
bution in the mixing layer of the potential core region. In other
words, they represent the first of the two integrals in Equations (49)
and (30). It can be observed that the magnitude of the radial velocity
ratio decreases in the radial direction. Similarly, at field positions
z.=12 rj and greater the magnitude of the axial velocity ratio de-
creases in the radial direction. The change in the direction of the
velocity in some cases for r/r0 > 4 may be noted. Comparing the com-
puted results for the vorticity distribution of Equation (62) [Abramovich]
with those of Equation (61) [Squire and Trouncer], it can be observed
that the magnitudes of Ug and US were generally higher, some field
points 11 percent higher, for the vorticity distribution based upon
Equation (62) [Abramovich].

b. The Developed Region. The three velocity profiles considered

for the developed region were

] r
. C 1
Uz] =5 (1 + cos ¢ F;) [Squire and Trouncer] (63)
U, =u_ ExP [- r2/(2 2 £)] [Gaussian] (64)
z, c ] 2 1

where C2 = ,08]

U, 2 U/(1 +0.125 (82 [Schlichting] (65)
1
where ¢ = 18.5 r]/z]

In the above equations, U. s the centerline velocity of the jet. Based

upon a virtual origin of
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e=12r.
'j

where e is measured from the face of the nozzle exit along the negative

Z, axis, the centerline velocity may be expressed by]9
U = (UJ- 13.2 r5)/(z; + &) (66)

Evaluating the vorticity distributions corresponding to these
velocity distributions, again neglecting the contribution to the peri-
pheral component of vorticity due to the termj Uqh z2y5 yields

) Ucn r

Ry = - 2—;;—sin w ;% [Squire and Trouncer] (67)

" Ye 2, 2 .2
2 = - EE—E?-exp (- /2 C; 2])  [Gaussian] (68)
2

171 Uc "
2= - 53 [Schlichting] (69)
z; (1 +0.125 £°)

The velocity distributions corresponding to Equations (63) to (65)
and the vorticity distributions corresponding to Equations (67) to (69)
are shown in Fig. 14. The geometry for the region of vorticity (lateral
spreading of the jet) for the Squire and Trouncer distribution was
based upon the selected virtual origin (e = 1.2 rj) and conservation
of linear momentum for the jet. The angle of spread determined for
ro in the developed region (boundary of the jet flow) was 10.4°,
However, it should be noted that the vorticity distributions for the
Schlichting and Gaussian profiles approach zero asymptotically in the
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radial direction. Thus, a large angle of spread, 20°, was selected
for the jet boundaries of both the Schlichting and Gaussian profiles.
For this angle of spread, the value of vorticity on the jet boundary
for the Schlichting profile was less than 5% of the maximum vorticity
and for the Gaussian profile it was less than 0.1% of the maximum
vorticity. Although the jet boundaries differed, the locus of the
radfi (r%) of the half velocity points was essentially the same for
all three distributions over the range of integration.

The results of computations, using the Squire and Trouncer, Gaussian,
and Schlichting distributions are presented in Tables 3, 4, and 5 respec-
tively. The values UB and UB represent only those components of the
total velocity ratio due to the vorticity distribution in the developed
region. The values tabulated were determined for the vorticity distri-
butions of Equations (€67), (68) and (69). The values represent the
second of the two integrals in each of Equations (49) and (50).

It should be noted that the value of o employed to normalize the
radial field position r was based on the lateral spreading of the
Squire and Trouncer vorticity region. For this selection of ror the
radial field positions r = 1.1 and 2.0 fell within and on the nominal
jet boundaries for the cases of the Schlichting or Gaussian profiles in
the developed region. Thus, calculations for these field positions
were not made for the Schlichting and Gaussian profiles except along
the baffle plate. The results in Tables 3 to 5 show that the smallest
contributions to field point velocities are those .associated with the

Squire and Trouncer distribution. The largest contributions come

from the developed region based on the Schlichting profile. It may

B
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TABLE 3. FIELD POINT VELOCITIES - CONTRIBUTIONS FROM
THE DEVELOPED REGION [SQUIRE AND TROUNCER
(COSINE) VELOCITY DISTRIBUTION]*

y=0 ro/rj = . y =12 ro/rj = 2,42
D D D D
u
___X______ X l& X i U | l& -
1.1 -7.630 0 1.1 -839.2 129.9
2 -13.51 0 2 -261.2 50.06
4 -24.57 0 4 -84.57 15.23
12 -36.40 0 12 -22.27 3172
20 -28.92 0 20 -12.92 -.2799
y=24 ro/rj = 4,62 y = 36 ro/r. = 6.83
D D D D
X Uy UX X - U, Uy
1.1 -133.9 -11.15 1.1 -87.51 -3.129
2 -76.31 -5.82 2 -48.55 -2.380
4 -37.49 -1.115 4 -24.06 -1.381
12 -11.09 -.6497 12 -6.857 -.8861
20 -5.884 -.5461 20 -3.214 -.5906
4
D_.,D D _

A1l tabular velocity ratios have been multiplied by a factor of 104.
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TABLE 4. FIELD POINT VELOCITIES - CONTRIBUTIONS FROM
THE DEVELOPED REGION (GAUSSIAN VELOCITY

DISTRIBUTIONS)*
y=0 rb/rj = ( y =12 r'o/rj = 2.42
D D D D
a X Ux Uy X Ux Uy
1.1 -8.672 0 4 -99.19 21.21
2 -15.38 0 12 -27.30 0.8492
4 -28.08 0 20 -16.11 -0.2097
12 -42.65 0
20 -34.64 0
y =24 rO/rj = 4,62 y = 36 ro/rj = 6.83
D D D D
w__‘x Ux Uy X Ux Uy
4 -46.86 0.1710 4 -30.63 -1.005
12 -13.98 -0.6453 12 -8.741 -1.043
20 -7.487 ~0.6502 20 -4.,126 -0.7379
= b_,D D _
4

ATl tabular velocity ratios have been multiplied by a factor of 10°.
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TABLE 5. FIELD POINT VELOCITIES - CONTRIBUTIONS FROM
THE DEVELOPED REGION (SCHLICHTING VELOCITY
DISTRIBUTION)*
y=0 r'()/r"j =] y = 12 ro/rj = 2.42
D D D D
X UX Uy F__x Ux Hy
1.1 -11.46 0 4 -135.3 27.55
2 -20.37 0 12 - 36.46 0.9814
4 -37.31 0 20 - 21.43 -0.3151
12 -57.34 0
20 -46.53 0
y = 24 r/r.=4,62 y = 36 r/r.=6.83
— o J o J
D D D D
X ) Ux | ____U.y X Ux qy
4 -62.26 -0.3407 4 - 40.50 -1.554
12 -18.57 -0.8891 12 - 11.60 -1.375
20 - 9.950 -0.8568 20 - 5.499 -0.9707
= _ D_,D D _
A11 tabular velocity ratios have been multiplied by a factor of 104.
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be also observed that both UE and US are negative for all profiles at

the axfal position y = 36.

2. Regional Contributions to the Aerodynamic Field

a. Relative Contributions of Different Regions of Vorticity along

the Length of the Jet. In contrast with Equations (49) and (50) which

have 1imits in the axial integrations of 0 to =, the numerical computa-
tions for Equations (49) and (50) were 1imited to a finite region of
vorticity. To show the effect of not including more distant regions

in the integrations, the velocity ratios Ug along the baffle plate

(y = 0) were computed for a sequence of finite regions of vorticity,
successively extending the region of integration farther downstream.
Table 6 presents the resulting velocity ratios as the region of in-
tegration was extended in the axial direction (y]) and in the image
direction (-yl). The results shown in Table 6 indicate that for
points on the order of 10 diameters away from the jet in the plane

of the baffle plate, the integration should extend in the neighbor-
hood of 100 jet diameters downstream for acceptable numerical accuracy.
The requirement to extend the integration in the downstream direction
diminishes for points closer to the jet, and presumably increases for
more distant points.

b. Contributions from Radial Elements of the Distribution of

Vorticity. An investigation was conducted to determine which radial
elements (Ax]) of the vorticity distribution made the largest contri-
bution to the velocity Ux at different field positions along the

baffle plate. The results of this investigation are shown in Table 7.
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TABLE 6. FIELD POINT VELOCITIES - EFFECT OF EXTENDING
THE REGION OF INTEGRATION [SQUIRE AND TROUNCER
(COSINE) VELOCITY DISTRIBUTION]*

y=0 Developed Region ro/rj =1
D D

x Uy (v7=26) | U2 (y,=65) | U2 (y,=130) | U¥ (y,=260)
1.1 -6.88 -7.44 -7.60 -7.64

2 -12.22 -13.22 -13.45 -13.52

6 -28.20 -31.09 -31.77 -31.98

10 -30.99 -35.52 -36.64 -36.98

16 -24.48 -30.77 -32.48 -33.02
20 -19.26 -26.22 -28.29 -29.16

D

D
*y=z2/rg ox=vw/eg ypEy/ry Ug=UC fUp o Uy = Ug fUg

J X

A11 tabular velocity ratios have been multipiied by a factor of 104.
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TABLE 7. FIELD POINT VELOCITIES - CONTRIBUTIONS
FROM RADIAL ELEMENTS OF THE JET*
y=0 Core Region rO/rj =
C C
axq aU;(x=1.1) | aUx(x=2) |5 (x=a) pul(x=12) Auﬁ(g=20)
0-.1 -164.6 | -26.35| -4.57 | -0.19 | -0.03
1-.2 -489.2 | -81.29] -15.07 | -0.73 | -0.13
2-.3 -781.6 | -135.8 | -27.12 | -1.56 | -0.30
3.4 -1010. -183.7 | -39.43 | -2.64 | -0.53
4-.5 -1147. -218.3 | -50.19 | -3.81 -0.79
5-.6 21175, -233.6 | -57.30 | -4.85 | -1.03
6-.7 -1084. -226.1 | -58.63 | -5.44 | -1.18
.7-.8 -879.9 | -190.4 | -52.42 | -5.26 | -1.16
8-.9 -576.9 | -122.9 | -37.61 | -4.03 | -0.90
9-1.0 -202.8 | -47.07| -14.19 | -1.60 | -0.36
TOTAL = t° -7510.6 | -1472 | -356.5 | -30.11 -6.41
y =0 Developed Region r'o/rj =
ax, AUE(x=1.]) AUE(X=2) AUE(x=4) AUg(x=12) AUE(x=20)
0-.1 -0.00472 | -00.01 | -00.01 |-00.02 | -00.01
1-.2 -0.05112 | -00.09 | -00.16 | -00.23 | -00.18
2-.3 -0.1954 | -00.3%4 | -00.62 | -00.90 | -00.71
.3-.4 -0.4628 | -00.82 | -01.48 | -02.15 | -01.69
4-.5 -0.8287 | -01.47 | -02.66 | -03.89 | -03.05
5.6 -1.216 -02.15 | -03.91 | -05.74 | -04.81
6-.7 -1.506 -02.67 | -04.85 | -07.16 | -05.64
7-.8 -1.562 -02.77 | -05.05 | -07.48 | -05.90
.8-.9 -1.259 -02.44 | -04.08 | -06.08 | -04.8
-9-1.0 -0.5160 | -00.92 | -01.67 | -02.51 | -01.99
TOTAL = UE = 7.602 -13.48 | -24.49 | -36.16 | -28.49

- - e C. € -
*y= z/rj Axq = Arl/ro X r/r0 AUX AUSTr/Uj AU

D—
X

D
8Ug. /U5

A11 tabular velocity ratios have been multiplied by a factor of 104.
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The values AUE for the core region and AUE for the developed region re-

present only that part of the aerodynamic field due to the individual

C
X

are the results obtained by employing Equations (49) and (50) to in-

radial elements axy in the respective regions. That is, aU’ and AUE

tegrate over the individual radial elements in the respective regions.

C
X

may be observed that the radial element (Ax1) of vorticity making the

The total velocity ratios U’ and UE are also presented in Table 7. It
largest contribution to the field point velocity shifts within a range
of (.5 - .6) to (.6 - .7) for the core regions. For the developed
region it may be observed that the radial element making the largest
contribution is (AX]) = (.7 - .8). In addition, it may be noted that
the contribution to the total field point velocity ratios from radial

element (Ax]) = (.9 - 1.0) varies from 3 to 7% of the total contribution.

3. The Potential Field
The irrotational and solenoidal part of the velocity field U]

>
denoted by E_, satisfies the boundary conditions for'ﬁ as discussed

p
in Section III A. The results of computations for the radial and

axial velocity ratios of Ep, Ex and E respectively, are presented

Yy
in Table 8. The values EX and E_ shown in the table were determined

y
for a uniform velocity distribution over the area of the jet nozzle
and represent the results of integration of Equations (51) and (52).
It may be noted that the contribution from the potential field to Ex
is significantly lower at y = 12 1n comparison with y = 0 and the

contributions continue to decrease as y increases.
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TABLE 8. FIELD POINT VELOCITIES - CONTRIBUTIONS
FROM THE POTENTIAL FIELD*
y=20 ro/rj = ] y =12 ro/rj = 2.42
X Ex Ey X Ex Ey
1.1 7396 0 1.1 7.092 16.09
2 1390 0 2 11.08 13.82
4 320.1 0 4 13.17 8.199
12 34.81 0 12 4,691 9712
20 12.51 0 20 1.957 .2430
y = 24 r‘O/rJ = 4,62 y = 36 ro/rj = 6.83
+—
X Ex Ey X Ex Ey
1.1 1.716 4.059 1.1 .7537 1.809
2 2.711 3.525 2 1.194 1.577
4 3.322 2.159 4 1.480 .9763
12 1.257 .2723 12 5724 . 1259
20 .5312 .06901 20 .2428 .03204
* = = = . = .
y z/ro X r/ro Ex Epr/UJ Ey Epz/UJ

A1l tabular velocity ratios have been multiplied by a factor of 104.
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To investigate the effect of a non-uniform velocity distribution
over the area of the jet nozzle, several non-uniform velocity distri-
butions were employed. An equation representing velocity distributions
for turbulent flow in a pipe was selected from reference 17(b) for

this purpose.
m
r.-r
=y (1
Uz] Um ( rj )

where Um is the peak centerline velocity. Employing the constraint

that the mass flow rate be the same as for the uniform velocity profile

u.,
j yields

U,

_ 2
um-zi (m© + 3m+ 2)

The profiles selected for comparison were based on the following values

of m and Um.

m= ,025 Um = 1.04 Uj
m= .05 U, = 1.08 Uj
m= .25 U, = 1.4 Uj

Evaluating Equations (51) and (52) with the selected non-uniform pro-
files, the results obtained were as follows. In comparison with the
uniform velocity profile, the largest change in field point velocities
Epr and Epz resulted from the profile with the largest peak centerline
velocity of 1.4 Uj representing the largest deviation from the uniform
profile considered. Even though the field position r/rj = 1.1, z/rj =0

showed a 10.4 percent decrease in Epr‘ at the field position r/rj = 2.0,
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z/rj = 0 the percent decrease in [pr was only 2.6 percent. At axial
positions (z/rj = 12) the change in field point velocities only
affected the third significant figure. For the other profiles consider-
ed, the deviations from uniformity were considerably less, and the
differences in computed Ep values as compared with those for the

uniform profile were insignificant.

4. Summary of Results for the Selected Velocity Profiles

The combined results for the field point velocity ratios due to
the mixing layer of the potential core region U /U » the developed
region UCT/U » and the potential flow 4 /U are presented in Tables
9 to 11. The field point velocity ratios resulting from a mixing
layer based upon the relation (Equation (59)), suggested by Squire
and Trouncer are the same for all combined results. Likewise, a
uniform velocity distribution over the area of the jet nozzle was
employed for all results. Thus, ﬁgT/Uj and Ep/Uj were the same for all
combined results. Variations in the combined results may be attributed
to differences in the vorticity distributions employed for the developed
region.

The combined results employing the Squire and Trouncer distribu-
tion, Equation (66), for the developed region are shown in Table 9,
where

Ur = Ux + Ex

[}
[
+
m

Yz y y

The values U, and Uy represent those parts of the total velocity ratios

U, and U, due to the vorticity distribution in both the core and developed

ORIGINAL PAGE IS
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TABLE 9. TOTAL FIELD POINT VELOCITIES
[SQUIRE AND TROUNCER (COSINE)
VELOCITY DISTRIBUTION]*
|y - 0 ro/rj =1
,L_f U, Ey U, Uy Ey u, Cp u,/u,
1.1 -7539. |7396. |-143. 0 0 0 2.04 0
2 -1487. | 1390 [-97.33 0 0 0 .948 0
4 -381.1 | 320.1 [-61.07 0 0 0 .373 0
12 -66.52 | 34.81 [-31.71 0 0 0 .101 0
20 -35.34 {12.51 |-22.83 0 0 0 .0521 0
y =12 ro/rj = 2.42
__x Ux Ex Ur Uy Ey UZ Cp Uz/Ur
1.1 -180.3 | 7.092 |-173.2 33.98 16.08 |49.96 3.25 |-2883
2 -114.8 { 11.07 {-103.7 2.600 13.82 |16.42 1.10 [-1583
4 -64.30 | 13.16 | -51.14 || -4.47 £.199 |[3.728 .263 |-729
12 -22.79 1 4.690 | -18.10 || -0.8349 | 0.9712 | 0.1363 || .0328 |-75.3
20 -13.09{ 1.956 | -11.13 |{-0.4279 | 0.243 [-0.1845 || .0124 | 166

*A11 tabular velocity ratios have been multiplied by a factor of 104
and Uz/Ur)'

(including C

P




TABLE 9. (cont.)*

24

rO/r. = 4,62
Uy E U, Uy Ey U, Cp u,/U,
-127.6{ 1.716 |-125.9 || -0.584 | 4.059 |[3.a75 1.59 |-2760
~69.95| 2.711 |-67.24 || -1.046 | 3.525 2.479 .453  {-3686
-35.07| 3.322 {-31.75 || -2.959 | 2.159 .7997 101 |-252
-11.12] 1.258 [-9.862 || -0.7469 | 0.2723 |-0. 4746 || .00975 | 481
-5.896 | 0.5312 |-5.365 || -0.5583 | 0.06901/-0.4892 || .00290 | 912
36 r":’/rJ = 6.83
Uy E, U, Uy Ey U, Cp U, /U,
-86.65 | 0.7536 {-85.90 || -1.404 | 1.809 .405 738  1-47.12
-47.54 1 1.194 |-46.35 || -1.431 | 1.576 .145 215 |-31.19
-23.56 | 1.479 |-22.08 || -1.367 | 0.9763 |-0.3917 || .0488 177
-6.862 | 0.572 |-6.289 || -0.9070 | 0.1259 [-.781 .00402 | 1242
-3.217 | 0.243 |-2.974 || -0.5932 | 0.03204 |-.5612 .00092 | 1887

*A11 tabular velocity
(including Cp and u,/

ratios have been multiplied by a factor of 104

Ur)°




76

region of the jet. That is, they represent the sum of the integrals
in Lquations (4Y) and (50). The value Cp represents the coefficient

of pressure

_P-p,

2
C R
P 12, u§

(v2

+12)

As previously stated, U, and Uz are the total velocity ratios due to
both the vorticity distribution and the potential field. The combined
results employing the Gaussian Profile, [quation (68), for the devel-
oped region are shown in Table 10. The values tabulated for Table 11
correspond to the Schlichting distribution, Equation (69), for the
developed region. It may be noted that the largest Cp values are
obtained for the Schlichting velocity profile. In addition, it may

be observed that the potential field contribution and the vorticity
field contribution are of the same magnitude and opposite signs at

radial field positions 1.1 and 2.0 along the baffie plate. For example,

examining Table 9, it may be observed that along the baffle plate,

y = 0, the ratio of EplﬁsT varies from .98 at x = 1.1 to .35 at

x = 20. Aty = 12 the ratio varies from a minimum .095 at x = 1.1 to
a maximum of .24 at x = 4 and then decreases to a value of .12 at
x = 20. For the field positions at y = 24 and y = 36, the maximum

ratios .10 and .085 occur respectively at x = 12.

D. Approximate Computational Models

In the interest of making computations of the type discussed in
the foregoing sections less elaborate for engineering purposes, several

approximate models of the vorticity distribution in the jet were
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TABLE 10. TOTAL FIELD POINT VELOCITIES
(GAUSSIAN VELOCITY DISTRIBUTION)*
.
y=0 ro/rj = ]

X u E U U E U C u_ U
L X X .r' y Yy ¥4 p z2''r
1.1{| -7541 |7396 |-145 0 0 0 2.10 0

2 || -1492 {1390 |-102 0 0 0 1.04 0

4 || -384.6 [320.1 |-64.5 0 0 0 .47 0
12 {| -72.76 {34.81 |-37.95 0 0 0 .0815 | 0
20 || -41.06 |12.51 {-28.55 0 0 0 .0815 | 0

y =12 ro/rj = 2.42
Hf_m - u, E, u. U E, u, cp U, /U,

4 || -78.91 |13.16 |-65.75 1.50 | 8.199 | 9.699 || 0.4417 |-1475
12 || -27.81 |4.690 |-23.12 || -0.303 0.9712 | 0.668 0.0535 |-288.9
O || -16.27 [1.956 |-15.21 -0.357 | 0.243 | -0.114 || 0.0231] 74.95

*A11 tabular velocity

ratios have been multiplied by a factor of 104
{including Cp and Uz/Ur)'
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TABLE 10. (cont.)*
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y = 24 rO/rJ = 4,62
X Ux Ex U, Uy Ey Uz Cp Uz/Ur
4 -46.62| 3.321 |-43.3] -0.0734| 2.159 2.086 .188 | -482
12 -14.01}1.258 {-12.75 -0.743 | 0.2723 |-0.471 .0163 | 369
20 -7.499 | 0.5312{-6.968 -0.6624 | 0.06901|-0.593 .00489| 851
y = 36 ro/rj = 6.83
xil U E, U, u, E, u, C, |y,
4 -30.13 [1.479 [-28.65 -0.9926 | 0.9763 |[-0.0163 |[{ .0821 | 5.93
12 -8.746 {0.572 }-8.174 -1.064 | 0.1259 |-0.9381 || .00667| 1147
0 -4.128 |0.243 |-3.885 -0.740 | 0.03204 |-.708 .00151 | 1822

*Al1 tabular velocity ratios

(including Cp and Uz/Ur)‘

have been multiplied by a factor of 104
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TABLE 11. TOTAL FIELD POINT VELOCITIES
(SCHLICHTING VELOCITY DISTRIBUTION)*
F_' =0
y = ro/rs = 1
X U, E, U, qy gy u, cp U,/u,.
1.1 |[{-7543 {7396 |-147 0 0 0 2.16 0
2 -1497 | 1390 |-107 0 0 0 1.14 0
4 -393.9 | 320.1 | -73.8 0 0 0 .546 0
12 -87.45 | 34.81 | -52.64 0 0 0 277 0
20 -52.95 {12.51 | -40.44 0 0 0 .163 0
y =12 r/Ty = 2.42
X Ux Ex Ur Uy Fy UZ Cp Uz/Ur
4 -115.0 | 13.16 | -101.8 7.851 {8.199 16.05 10.52 (1576
12 -36.98 { 4.690 | -32.29 -0.1705 | 0.9712 | 0.8007 || 0.1043 (248
20 -21.59 | 1.956 | -19.64 -0.4626 | 0.243 | -0.2196 |{ .0386 {112

*Al11 tabular velocity ratio
(including Cp and Uz/ur)’

R
OF
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TABLE 11. (cont.)
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.._.._i 24 ro/r‘:j = 4,62
X Uy E, U, Uy Ey u, Cp u,/u,.
4 -62.02 | 3.321 |-58.7 -0.5849! 2.159 1.574 .345 {-268
12 -18.59 | 1.258 }{-17.33 -0.986 | 0.2723 |-0.714 .030 412
20 -9.962 | 0.5312 |-9.431 -0.869 | 0.06901{-0.800 .0089 | 848
= 36 ro/r. = 6.83
5 X Ux Ex Ur Uy Ey Uz Cp Uz/Ur
4 -40.0 [1.479 |-38.52 -1.541 | 0.9763 | -0.565 .1484 |146
12 -11.61]0.572 (-11.04 -1.396 | 0.1259 |-1.274 .0123 1150
20 -5.501 { 0.243 |-5.258 -0.973 | .03204 |-.941 .00285|1789

*A11 tabular velocity ratios have been multiplied by a factor of 104
(including Cp and Uz/ur)‘
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examined. For comparison purposes, the models were based on the Squire
and Trouncer profiles, assumed for the purposes of numerical compari-
sons to be exact. The radial distributions of vorticity selected were
(a) a triangular function, (b) a uniform step-function and (c) a

delta function. The latter corresponded to replacing the distributed
vorticity in the jet by a vortex sheet.

The motivation for examining the approximate models was to acquire
some insight into the applicability and use of approximate models which
can reduce the mathematical complexity of Equations (49) and (50). It
should be noted that the ease of computation increases as one proceeds
from the approximate model (a) to the approximate model (c). The cir-
culation strength per unit length, r'', based upon the centerline veloc-
ity, was chosen to be the same for all approximate models. The tri-
angular vorticity profile required integration of a point by point
distribution of vorticity, which was also required for the Squire and
Trouncer Model. The second approximate model, the uniform vorticity
profile, employed an average vorticity per unit length as opposed to a
point by point distribution employed in the previous model. In the
third model examined, the vorticity was confined to a vortex sheet.
Thus, the region of integration, for Equations (49) and (50) employ-

ing the vortex sheet model was a surface as opposed to a volume.

1. Triangular Vorticity Profile
For this model, the sinusoidal distributions of Equations (61) and

(67) were replaced with the following triangular distributions.

ORIGINAL PAGE IS
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“op T T (ry=rp)/(egmr) forrp < vy < v
core (70)
region
RB] = - (rg-r)/(rp-rp) forr < vy < vy
nol = =y T/, forrp <rp
developed (71)
region
“0] = <ty (rg-r)/(rg-rp) for v <ry <rg

In Equations (78) and (71), r, is the value of ry when o = qa_ (the

0
1
maximum value of vorticity at an axial position). To determine the

value of @ Equation (34) was employed for both the core and developed

S C

where S here refers to a meridional section of the jet from the axis

regions.

outward and of unit length along the jet, and C is a curve bounding
that section. Assuming that only the centerline velocity contributes
significantly to the 1ine integral of Equation (34) and substituting
the values of vorticity from Equatfons (70) and (71) yields, after

integration over r

= 2 Ul! core (72)
9 ® ¥ or region
o I
and )
]
- C developed
m r [ region ] (73)
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2. Uniform Vorticity Profile

Employing Equation (34), the average vorticity in the core region

and the developed region may be expressed as

U,
= - _Jd core
< Qer Fo-T1 E‘egion] (7%)
<Q > = - EQ developed (75)
8, "o region

where, as in the case of the triangular model, all contributions to
the circulation with exception of the centerline velocity are treated
as negligible. The average vorticity for the core region Equation (74)
extends to the edges of the mixing layer. The average vorticity in

the developed region Equation (78) extends to the edge of the jet.

3. Vortex Sheet Model
Employing Equations (74) and (75), letting (rb-rI) approach zero
but maintaining a constant product of Qe] (ro-rl) yields for the core

region and developed region

Qe] (ro-rl) = - Uj 1) ('h) [core region] (76)

Qel (ro-rl) =-Uc s (qn) [developed region] (77)

The strength of the vortex sheet per unit length in the 3 direction,
denoted by y, is then given by UJ or UC’ respectively. This conical
sheet of vorticity was placed along the half-velocity 1ine of the jet.

For the core region, the angle of the half-velocity 1ine was taken to

E IS
ORIGINAL PAG
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be zero. The half-velocity 1ine for the fully developed region was
chosen to diverge from the virtual origin of the jet at a half angle of
5°. These choices correspond approximately with those observed in

turbulent jets.20

The vorticity distributions for the core region
Equations (70), (74), and (76), and for the developed region Equations
(71), (75), and (77) are shown in Fig. 15. The distributions,
Equations (61) and (67), obtained from the Squire and Trouncer (cosine)
velocity distribution are also shown. The ordinate Qe] (ro-rl)/Uj

and the abscissa (ro-r])/(ro-rl) are for the core region. It should
be noted that the vorticity of the vortex sheet (delta function) is
infinite. It may be observed that the triangular profile represents

the best approximation in comparison with the uniform profile and the

vortex sheet.

4, Result of Computations Based on the Approximate Models

The results of computations, using the triangular profile, the
uniform profile, the vortex sheet model and the Squire and Trouncer
(cosine) reference profile are presented in Table 12. The values
tabulated were determined for the vorticity distributions of Equations
(70), (71), (74), (75), (76), (77), (61) and (67). The values U, and
Uy represent both integrals in Equations (49) and (50) respectively.
It may be determined from Table 12 that the ratios of the contribution
of the individual approximate models to that of the Squire and Trouncer
(cosine) velocity profile have the following trend. For y = 0 the
ratio Ui/U;ef varies from .98 at the point x = 1.1 to .92 at x = 20.

II

In contrast, the ratio Ux /U;ef varies from 1,004 at x = 1.1 to 1.55
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20.

UIII/Uref

Comparing the vortex sheet model at y = 0, the ratio

varies from .97 at x = 1.1 to .66 at x = 20.
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TABLE 12. FIELD POINT VELOCITIES - CONTRIBUTIONS
FROM THE COMBINED MIXING AND DEVELOPED
REGION*
y=20 ro/rj=1
I II 111 ref. 1 Il I11 ref.
X Ux Ux Ux UX U.y Uy Uy Uy
1.1|-7412 | -7573 -7381 -7539 0 0 0 0
2 | -1456 | -1525 -1393 | -1487 0 0 0 0
4 |-365.11-414.9 | -326.3 | -381.1 0 0 0 0
12 -61.43 | -93.53 | -46.71 | -66.52 0 0 0 0
20 -32.67 | -54.81 -23.33 | -35.34 0 0 0 0
= 12 ro/rj = 2.42
I I1 111 ref. I II II1 ref.
X Ux Ux Ux Ux Uy Uy Uy Uy
1.1 | -160.2 |-520.3 -94.26 |-180.3 41.51 -19.3 55.63 33.98
2 -102.4 }|-265.2 | -62.37 |-114.8 || 6.65 23.33 14.25 2.6
4 -58.72 |-116.78| -40.48 | -64.30 {|-2.95 1.99 | -0.36 -4.47
12 -21.26 {-37.10 | -16.06 |-22.79 {{-0.6307] -1.009| -0.2105| -0.8349
20 -12.29 |-21.06 | -9.454 | -13.09 |{-0.3603| -.8537| -0.1940| -0.4279

*I = The triangular profile,
sheet model, ref. = The Squire and Trouncer (cosine) profile.

Il = The uniform profile, III = The vortex

A1l

velocity ratios have been multiplied by a factor of 104.
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TABLE 12. (cont.)*
y =24 ro/rj = 4,62
-
I Il I11 ref. |i 1 I1 IT1 ref.
X U Ux Uy Y Uy Uv Yy Yy
1.11 -121.9 | -210.4 | -96.55 | -127.6 || .763 -9.64 3.881 |-0.584
2 | -66.40 | -119.07 | -51.92 | -69.95 |[-.001 -4.217 | 2.335 (-1.046
4 | -33.05]-59.10 | -25.46 | -35.07 |{-.9178 | -2.527 |-.6743 |-2.959
12 | -10.48 | -17.79 | -8.137 [ -11.12 |{-.6564 | -1.621 |[-.4110 [-0.7469
20 | -5.676 | -6.945 | -4.366 { -5.896 {|-.5178 | -1.188 |-.3856 |-0.5583
y = 36 r/r; = 6.83
I Il II1 ref. I I1 I11 ref.
X Ux Ux UX Ux Uy Uy Uy Uv
1.1] -82.63 {-144.2 | -66.30 | -86.65 ||-0.935 | -3.933 | 0.4525 |-1.404
2 | -45.25{-79.34 | -36.03 | -47.54 {|-1.002 | -3.588 | 0.1270 |-1.431
4 | -22.33-38.98 | -17.56 | -23.56 |{-1.091 | -3.062 {-0.4048 [-1.367
12 | -6.492 |-10.52 | -5.092 | -6.862 {|-0.8382| -1.979 }-0.6179 {-0.9070
20 | -3.048 | -4.464 | -2.396 | -2.217 {{-0.5581| -1.128 {-0.4340 {-0.5932
*I = the triangular profile, II = The uniform profile,

III = The vortex sheet model, ref. = The Squire and Trouncer (cosinez

profile.

A1l velocity ratios have been multiplied by a factor of 10%.
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ORIGINA
V. DISCUSSION OF POORLQII)JAA%?T]}S

The results of the computations for the axisymmetric jet serve to
illustrate the character of the method of computation employing the
Stokes potentials. For example, the relative contribution of the
potential part of the field Ep as compared with the part GST due to
vorticity is of some interest. In principle, at least, the potential
part may be determined with considerable accuracy, for example, for
more general jet flows, whereas the vorticity contributions are likely
to be less accurately known. Comparisons of the computed results with
the available experimental data and with other theories illustrate the
strengths and weaknesses of the method of computation and of the

existing theoretical velocity profiles for the jet flow.

> >
A. Contribution of EﬂiRelat1ve to UST

The results presented in the previous section, Sec. IV, (Tables
9 to 11), show that Ep is opposite in sign to GST along the baffle
plate for the example considered. The field point velocity U along

the plate is determined by the difference between the magnitudes of

-> > -+ -
E and U . If these values, E_ and U__, are of approximately the
p ST p ST
-+ +
same magnitude, errors in Ep or UST are magnified in the computed

-
resultant U. Errors of this type are nost significant near the
source, and they become insignificant sufficiently far from the

source. It may be observed from Table 9, for example, that errors of
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this type are likely to be important at X = 1.1 on the baffle plate.

At this position, a 2 per cent increase in the magnitude of

Uy EUX = Uswr/Uj) increases the magnitude of U (Ur = radial component
of U) from 143 to 294, other terms involved being considered constant.
In contrast to this magnification of error, at field points away from
the source (Table 9) the relative contribution of Ep to the total field
point velocity rapidly decreases. That is, neglecting the contribution

from Ep entirely at y = 36 results in a maximum error of about 1 per

cent in the field point velocity ratio G/Uj.

B. Comparison of Computed Results with

Experimental Data and Other Theories

1. Comparison with Experimental Data
Experimentally determined pressure coefficients on a baffle plate
in the plane of the nozzle may be compared with the theoretical pre-
dictions of the coefficient of pressure for the selected vorticity
distributions. The available experimental data include results

obtained by Hygnanskil] and by Gentry and MargasonZ].

The corresponding
experimental and theoretical values of Cp are shown in Table 13. A
comparison of the experimental data, C§ and Cg, with the theoretical
values for Cg are shown in Fig. 16.

Comparing the experimentally determined pressure coefficients,
the values determined by Wygnanski, Cl and Cg,

obtained by Gentry and Margason, Cg and Cﬁ, by more than a factor of

are lower than those

2 at the points close to the source. This disagreement between the

different experimental data could have been a consequence of differing
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Table 13. EXPERIMENTAL AND THEORETICAL VALUES OF -Cp X 104*

y = 0 EXPERIMENTAL RESULTS COMPUTED RESULTS r'o/rJ =1
X c“) ¢t ¢ ¢, cg ¢ c; c;
1 16.3] 9.6
1.1 2.04 2.10 2.16 4.43
2 2.9 [ 2.5 6.1 | 4.4 .948 1.04 1.14 2.09
4 1.2 .8 12.01]1.4 .373 417 .546 .908
8 1.0 .7
12 .101 .144 277 .302
| ——- A
*1 Wyqgnanski's data for Reynold's no. of 53,800
2 ‘lygnanski's data for Reynold's no. of 51,500
3 Gentry's and Margason's data for a plenum-chamber to ambient

pressure ratio of 1.32

Gentry's and Hargason's data for a plenum-chamber to ambient
pressure ratio of 2.04

Squire and Trouncer velocity profile (Table 9)

Gaussian velocity profile (Table 10)

Schlichting velocity profile (Table 11)

Schlichting velocity profile for developed region and Abramovich

hla

velocity profile for core region {Tables 5 and 2)

Qv
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velocity profiles at the exit orifice. For example, for the data of
Table 9, a 2 per cent reduction of EX would yield a Cg value of 9.6
as opposed to 2.04 at X = 1.1 and a value of 1.56 as opposed to .948
at X = 2.0. From the results of Section IV 3, showing the sensitivity
of Epr to non-uniformities in the velocity profile at the nozzle exit,
it is apparent that such a change could easily be accounted for.
Changes in tneoretical EX values become less significant as x increases
beyond about 2. The different experimental data also tend to show
better agreement at the more distant field points. It may be observed
in Table 13 and Fig. 16 that the theoretical magnitudes of Cp are
generally lower than the experimental values.

The pressure coefficient Cg shows reasonably close agreement with
Wygnanski's data, as might be anticipated because Nygnanski's data
had been found to compare well with other results computed using the
Schlichting profile (Equation (65)) for the developed region of the jet.
The use of the Abramovich relation (Equation (60)) for the velocity pro-
file in the mixing layer in the determining of Cs should be expected to
yield more accurate results as compared with the cosine profile of
Squire and Trouncer (Equation (59)). Experimental data for the velo-
city profile in the mixing layer have been found to agree quite closely
with the Abramovich re]ationg. It may be noted that the computed Cp
magnitudes close to the nozzle are significantly smaller for the

cosine profile as compared with that of Abramovich, accounting for

part of the difference between the magnitudes of Cg -7 and the
experimental data, C; - 4.
ORIGINAL PAGE 15
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On the basis of the above comparison, it may be recommended that
computations according to the theory making use of the Stokes
potentials are likely to be reasonably accurate, if

(1) the velotity profile of the jet at the nozzle exit
plane is accurately known,
(2) the Abramovich relation, Equation(60), is employed for
the mixing layer of the potential core region, and
(3) the Schlichting profile, Equation (69), is employed for
the fully developed region of the jet, with compu-
tations involving integration only within a 20°
half-angle cone.
These recommendations apply, of course, only to the example con-
sidered, that of an axisymmetric jet exhausting normally through a
plane baffle plate. Nonetheless, the sensitivity to those parameters
observed for this case seem likely to be applicable to more general

jet flows.

2. Comparison With Other Theoretical Models
wygnanski]], employing a distribution of sinks along the axis of
symmetry to satisfy approximately the boundary conditions on the
boundary separating the jet flow from the aerodynamic field, obtained
the following equation for the pressure coefficient along the baffle

plate.

2
9 _ 1 0.514
Cp-———z'—z' 0.715 -

Anlx [1 + (x/12)271V/2

(78)

where x = r/rj




In developiny the model, Wygnanski chose the value of 0.404 for the
numerical constant Kys in the developed region Equation (35), correspond-
ing to the Schlichting velocity profile. Values for this constant have
been found to range from 0.220 to 0.404 as noted in Sec. IV.

22

Stewart™ , also examined the irrotational flow field external to

a jet. From similarity considerations, Stewart expressed the mean flow
near the axisymmetric jet boundary as U¢ = C/p, where ¢, p are the
colatitude angle and the radius in a spherical coordinate system

(Fig. 3) with the virtual origin of the jet located at the origin of
the coordinates and with the flow along the Z axis. For a jet emerging
normally through an infinite plane baffle plate, it was found that the
velocity potential ¢ could be expressed by

¢ = C tan ¢, In (p sin ¢) (79)

where ¢ = the half cone angle containing all of the turbulent

region of the jet (about 12.5°)

Employing Equation (79) and Equation (35) with K.l = 0.404, the correspond-
ing pressure coefficient along the baffle plate (¢ = w/2) may be express-
ed as

10

c)’ - (-0.252/x)°2 | (80)

vhere x = r/rj

A comparison of Wygnanski's results, the results according to
Stewart's‘theory Equation (80), and the results of computations employing
Stokes potentials with Schlichting's velocity profile for the developed

region is presented in Table 14.

ORIGINAL PAGE I8
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y =0 ro/rJ =1
7 8 9 10
X C C
P P CP CP
1.1 2.16 4.43 8.58 11.1
2 1.14 2.09 2.77 3.34
4 0.546 0.908 0.755 0.836
12 0.277 0.302 0.219 0.093
20 0.163 0.17 0.129 0.033
*7 Schlichting velocity profile for developed region and Squire
and Trouncer velocity profile for the core region (Table 11)
8 Schlichting velocity profile for developed region and Abramovich
velocity profile for core region (Tables 5 and 2)
9 Wygnanski, Equation (78)
10 Stewart, Equation (80)
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As mentioned in Sec. VB2, the best agreement with the experimental data
may be expected for Cg as compared with C;. Wygnanski's relation

Equation (78) for Cg, yields values which had been shown to fit rather well
his experimental data]], also corresponds well with Cs as might be

expected. The results obtained from Equation (80), Cgo, agree fairly well

with Cg at small values of x but decrease in magnitude more rapidly as
X increases to larger values. This difference in Cg and Cgo is most

Tikely inherent in the different modeling of the jet. Wygnanski
employed a Tine of sinks and Stewart's representation corresponded to
application of the boundary conditions on the surface of the jet. The
core region was not represented by Stewart's model at all. Rather,
the developed region was presumed to originate at the point source.

On the other hand, Wygnanski's analysis does not strictly represent
the actual geometry, as does the present theory or Stewart's theory.

8 and C9

Therefore, the values of Cp b

as might be expected show differences

at small values of x.

C. Comparison of Computations for the Approximate Models

with the Computations for the Reference Model

(Squire and Trouncer Profile)

The three approximate models for the radial distribution of
vorticity in the jet (triangular, uniform, and vortex sheet), Section
IV D, were chosen to have identical values for the circulation per
unit length. The common value of I'' corresponded to that for the
Squire and Trouncer velocity profiles for both the potential core and
developed regions of the jet. The computed values for Cp along the

baffle plate, Table 12, compared quite well with the reference values

ORIGINAL PAGE IS
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except for the uniform and vortex sheet models at points distant from
the axis. As could be anticipated, the results for the triangular
profile agreed more closely with those for the reference computation
even at the distant points. The agreement of all of the results at
points nearer the axis could be expected because
(a) the Cp values close to the axis depend strongly on the
form of the mixing layer in the potential core region,
and
(b) the circulation per unit length and the moments of the
vorticity distributions for the approximate models of
the potential core layer closely corresponded to that
for the reference profile
On the other hand, for computations downstream and at points far
from the axis, where contributions from the developed region of the
jet become significant, the agreement between results for the approxi-
mate models and for the reference profile was significantly poorer,
except for those of the triangular profile. The disagreement may be
attributed to the difference between the moments of the vorticity
distributions for the uniform and vortex sheet models, as compared
with that of the reference profile. Those differences were greatest
for the developed region with the geometry chosen for the computations.
With the discussion of Sec. III C in mind, the proper choice for the
radial position of the vortex sheet, for example, would be such that
the moment of vorticity distribution is maintained in agreement with
that for the reference profile. The radial position of the vortex

sheet was simply chosen to coincide with the half-velocity points in
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the jet which also corresponded with the points of peak vorticity (Fig.
15). For more accurate results, then, the divergence angle of the cone
joined by the vortex sheet should have been larger.

Even though the approximate models yield somewhat different
results as compared with those for the reference profile, the agreement
could be acceptable for some computational purposes for all of the
approximate models. The triangular profile best represents the data
for the reference profile as could be expected. The vortex sheet model,
even with the poor choice for its geometry, did yield the reference
values to a reasonable approximation. Because the computations for
the vortex sheet model are by far the simplest, the latter comparison

suggests the use of such a model for most computational purposes.

D. Evaluation of the Integral Moment of Vorticity

The vorticity magnitude at a field point has been shown to be

directly proportional to the magnitude of the integral moment of

> -
Im = X] X Q] dT] (81)

Recalling Equation (32), one has

vorticity

U =g v | (W) 'fil x & dr, (32)
Now, for the examples considered in the previous sections, involving
an axisymmetric jet, the vorticity is entirely peripheral. Im may
then be determined as a summation of integrals of the form in Equation(81)

for small slices of the jet as discussed in Section III C. This enables

ORIGINAL PAGE 18
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the evaluation of the significance of l1ocal contributions of the
vorticity along the jet to the field point velocity.

Considering a small section of the jet flow (refer to Fig. 8) for
the axisymmetric jet, the magnitudes of an integral moment of vorticity

per unit length along the jet may be expressed as

'l 2
I = 21rfr] gy dry (82)
The small section is considered to be a plane slice of the axisymmetric

jet flow field of infinitesimal thickness.

Introducing the following transformations into Equation (82)

» [core region]
w=(rg - r)/rg -r)
i A
> [developed region]
M= r]/ro

yields for the core region

I; 2 (r_ - rI) (ro - rl)% 2
- Ty > JAdu (83)
2m Ujr0 L 0

and for the developed region

-——Em—z—-=.l.u2 A du (84)
ZnUJro
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The values of the inteqral, [quation (83), were calculated for the
mixing layer of the potential core region based on the Squire and
Trouncer profile, [quation (61), and on the approximate models, Equations
(75), (74), and (76). The values of the integral, Equation (84), were
calculated for the developed region based on the Squire and Trouncer
profile Equation (67), the approximate models Lquations (71), (75), and
(77), the Gaussian profile Equation (68), and the Schlichting profile

Equation (69). The results of these calculations for the mixing region

were as follows.

2
1 r -r (r. - ry)
m__ 0 I ‘o I
mop TR T )
jo 0

vhere

y = .297 [Squire and Trouncer profile]
.290 [Triangular Vorticity profile]
.333 [Uniform Vorticity profile]
.250 [Vortex Sheet]

For the developed region, the results of these calculations were

In

—— =y (8€)
jo
where
y = -.297 [Squire and Trouncer profile]
-.290 [Triangular Vorticity profile]
-.333 [Uniform Vorticity profile]
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-.250 [Vortex Sheet]
-.390 [Gaussian profile]

-.500 [Schlichting profile]

It may be observed for the core region that the magnitude of the
integral moment of vorticity Equation (85) is approximately the same for
all four profiles. Note that the third term on the right side of
Equation (85), differing slightly for the different profiles, makes the
smallest contribution to I;. This provides confirmation of the statement
in the previous subsection C concerning the close correspondence of the
Im's for the different profiles in the core region.

In contrast to the above results for the core region, the integral
moment of vorticity Equation (86) differs significantly for the six pro-
files considered. This substantiates the explanation presented in sub-
section C for the disagreement among the computations for the different
profiles, where contributions from the developed region of the jet become

significant.

>

Based upon the proportionality US? a Im, as previously discussed,
the ratio of the integral moments and the field point velocities for
the developed region for different profiles should be approximately
proportional. Selecting the values of UX and Uy for the Gaussian profile
Table 10 and the Squire and Trouncer profile Table 9 at y = 36, x = 20

->

yields a ratio of 1.28 for U The ratio of Im's for the profiles is

's.
St
1.31. Thus, the proportionality is fairly close. Selecting other pro-
files similar results are obtained.

Recall that the computed values of Cp as shown in Tables 10 and 1

were based upon a half-angle spread of 2)° in the developed region
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of the jet for both the Gaussian and Schlichting profiles. It should
be noted that a more acceptable half-angle of spread would have been

10 to 1509(b). Most experimental observations, for example, indicate
the maximum spreading of the jet boundary to lie within that range of

ha]f-anq]esZB.

In order to evaluate the effect of reducing the half-angle to
correspond more c]qsely with the observations, the half-angle of 100,
used for the Squire and Trouncer profile, was also employed for the
Gaussian and Schlichting profiles. The spreading angle of the half-
velocity line was left unchanged for the profiles. Reducing the half-
angle of the spreading of the jet boundary, then, had the effect of
neglecting the vorticity associated with the Schlichting and Gaussian
at points outside the boundary. The results of the computations for
both the Gaussian and Schlichting profiles yielded lower Cp values
than those shown in Table 9 for the Squire and Trouncer profile.

It appears that all three of the profiles considered are not
truly representative of the observed vorticity distribution in the
developed region of the jet. The Squire and Trouncer profile with a
reasonable half-angle of spread of 10° yields values of Cp which are
too low in comparison with experimental data (Table 13). The Gaussian
profile, even for a spreading half-angle of 20°, yielded results below
the experimental data. The best agreement with the experimental data
employing the Schlichting profile was found for a half-angle of spread

for the jet of 20°. In comparison with typical observed spreading
angles, a half-angle spread of 20° is not reasonable. However, as

previously mentioned, even at this large angle of spread the value of

ORIGINAL PAGE IS
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vorticity at the boundary of the jet flow for the Schlichting profile
is still about 5 per cent of the maximum. A more reasonable profile
with the same general shape for the developed region would be charac-
terized by a vorticity distribution such that the half-angle of spread
is about 10 to 15°. " In addition, it would be expected that the moment
of vorticity should be larger, either due to a larger peak vorticity

or a redistribution of the vorticity profile.
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VI. CONCLUSIONS

The following conclusions may be drawn regarding the computation
of the aerodynamic field of a jet according to the method of Stokes
potentials (scalar and vector potentials). The conclusions, for the
most part, are supported by the application of the method to the
axisymmetric jet exhausting through a plane baffle plate.

(1) The most significant information required for the compu-
tations are the velocity profile at the exit plane of the
nozzle, and the integral moment of vorticity along the jet.

It was found that the potential part of the velocity in the aero-
dynamic field Ep vwas significant for most of the points computed.

This was especially true for points near the origin of the jet. The
need for the integral moment of vorticity Im was anticipated from
consideration of the es/mptotic behavior of the theory in Sec. III C.
This is strictly true for jets for which the only vorticity present is
peripheral as in the case of the axisymmetric jet. For jets of a more
complex nature, there would also likely be a requirement for knowledge
of the integral moment of streamwise vorticity in the jet. For the
axisymmetric jet, reasonable values for the integral moment of vorticity
could be obtained from values for the velocity on the axis and the
radius of the half-velocity point as functions of distance along the

jet, without further knowledge of the jet velocity profile.
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(2) At field points on the baffle plate within approximately
one diameter from the edge of the jet, the contribution
GgT due to the developed region of the jet was negligible;

at all other field points considered, to approximately

20 jet radii from the region of the jet in either the

-+
strearwise or lateral direction, all three components L

> p’

GgT and Ugr were of comparable magnitudes. At more distant

field points, the devéloped region tends to dominate, as

inight be expected.
Since both Ep and EgT remained relatively large, but of opposite sign,
at distances to approximately 6 jet radii from the edge of the jet,
both must be known with relatively high accuracy for field points on
the Laffle plate within that range. This significance of the velocity
profile of the jet at the nozzle exit has been observed exper1menta11y2].
Theoretical considerations have been heretofore limited to speculations
as to the influence of the jet velocity profile on the mixing layer
and consequent changes in the entrainment rate.

(3) The computations tended generally to underestimate the

Cp magnftudes observed experimentally, except for the

case where the Schlichting profile was employed,

together with an overall spreading half-angle of 20°

for the jet flow, which compared well only with

Hygnanski's data.
The comparison with experimental data indicates a need for improvement,
both in the experimental data and in the analytical characterization

of the jet flow. The experimental data available were not consistent,

differing by more than a factor of 2 (perhaps 4, considering the
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Ricou and Spalding results). Moreover, the Schlichting profile,
yielding the most favorable comparison, is not compatible with exper-
imental observations of the spreading angle of the jet boundary. The
analytical results were found to be comparable with both the experi-
mental data and the other theories, within the limit of the state of
the art.

Theories relying on the scalar potential yield acceptable and
simpler relations for the axisymmetric jet. The method of Stokes
potentials however, offers the added benefit of explicitly accounting
for nonuniformities in the initial velocity profile of the jet,
simpler computations for more complex jet flows, the prospect for
developing simpler vortex sheet models, and less reliance on data
that are difficult to obtain for the more complex flows (for example,
reasonable results may be obtained from measured values for UC and
r,» as opposed to determinations of entrainment required for the
method employing the scalar potential alone).

(4) The approximate vortex sheet model was found to yield
results comparable to those obtained with the complete
vorticity profiles, and thus may be recommended for
computational purposes.

The vortex sheet model might be expected to be useful because (a) it
should yield precise results asymptotically if Im is properly chosen,
and (b) for regions of the jet close to the nozzle, Im is known with
some accuracy because the mixing layer is relatively narrow there and
grows only gradually. The computations for the axisymmetric jet
supported this view. There appears to be little justification, con-

sidering the state of the art, to employ more complex models.
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APPENDIX A

Annotated Bibliography on Axisymmetric Jets

Experimental and theoretical investigations of axisymmetric
turbulent jets have been far too numerous to attempt a complete review
here. Rather, a synopsis of some of the studies is presented in the
form of an annotated bibliography. More complete discussions may be

found in Abramovichg, Hinze‘g. Townsend7

25

, and in review papers (e.g.,

Halleen2>, skifstad).

1. Taylor, G. I., "Eddy Motion in the Atmosphere", Phil. Trans.
Roy. Soc. London, Series A, Vol. 215, 1915, pp. 1 - 26.

Taylor developed a purely phenomenological theory concerning
vortex motions. He assumed that the vorticity could be considered
as a transferable quantity. That is, the vorticity would be conserved
along the path of a lump of fluid over a certain distance. Based

upon this assumption, he obtained the relationship

where € is the coefficient of eddy diffusion for vorticity, 2o is
Taylor's mixing length for vorticity, and dU]/dx2 is the time mean value
of vorticity for two-dimensional flow uniform in the x, direction. Taylor
extended this theory to three-dimensional flow. This three-dimensional

theory is known as the modified vorticity-transport theory.
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2. Zimm, W., "Uber die Stromungsvorgange im freien Luft strahl,"
Fgggchungsarbeiten aus_dem Gebiete des Ingenieurwesens, No. 234,
T

Zimm conducted an experimental investigation of an axisymmetric
jet issuing into a quiescent atmosphere. In the Zimm experiments

the jet exit velocity was non-uniform, that is

UfVgp = 1.1

where Um is the peak exit velocity and Uc is the exit velocity close

p
to the boundary of the jet. The experimental data for the decay of
the centerline velocity in the developed region of the jet could be

approximated by the expression

Uc/UJ = 0.96/(az/rd)

where Uc is the centerline velocity, UJ is the average jet exit velocity,
z is the axial distance downstream from the jet exit, r; is exit radius
of the jet, and a is a numerical constant with a value of 0.070.

3. Prandtl, L., "Uber die ausgebilidete Turbulenz," ZAMM, Vol. 5,

1925, pp. 135-139 (also Proc. Ind. Intern. Cong. Appl. Mech.,
Zurich, 1926, pp. 62-75.)

Prandt1l introduced a phenomenological theory concerning momentum.
He assumed that the momentum could be considered as a transferable
quantity. That is, the momentum is conserved along the path of a Tump
of fluid over a certain distance. Based upon this assumption he ob-
tained the two-dimensional relationship
mo 1m2 I g;%

€
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where c_ is the coefficient of eddy diffusion for momentum, ¢ is
Prandtl's mixing length for momentum, and dU']/dx2 is the difference
in mean velocity, between the end of the path and the start of the path

from where the lump originated, divided by the path length.

4. Tollmein, W., "Berechnung Turlenter Ausbreitungsvorgange,"
ZAMM, Vol. 6, 1926, pp. 468-478 (also NACA TM 1085 [1945])

Tollmein published an analytical investigation of the axially
symmetric jet. His results were obtained by employing the "mixing
length" concept as introduced by Prandtl. His results showed for

the fully developed jet that
Uc a 1/(Z + e)

where Uc is the centerline velocity, Z is the main flow direction, and
e is the position of the virtual origin measured from the face of the
nozzle exit along the negative z axis. The above results were based
on assuming the pressure in the jet was constant. To improve his
analysis, he considered pressure differences and concluded that the
pressure differences were so small that no modifications of the veloci-
ties were necessary. In addition, Tollmein obtained an analytical
representation of the velocity profile for both the transverse and
longitudinal component of velocity. The use of one empirical constant
enabled his analytical results to be brought into very good agreement
with results of experimental investigations.

5. Townend, H. C. H., "Flow Induced by a Jet of Air," Rept. No. ARC 1934,
June, 1934, British Aeronautical Research CouncAil.

Townend experimentally examined the flow induced by a jet of air.

He interpreted his results as consisting of a jet with bounding eddies
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constituting discrete vortex rings. In addition, it appeared as if the
jet was alternately accelerated and decelerated as each successive
vortex ring passed downstream. The overall effect was a kind of puinp-
ing action.

6. Kuethe, A. M., "Investigations of the Turbulent Mixing Regions Formed
by Jets," J. Appl. Mech., Vol. 11, No. 3, 1935, pp. AB7-A95.

Kuethe considered the turbulent mixing surrounding the jet and
obtained a solution for the region surrounding the potential core of
the jet. He assumed no pressure difference between the jet and the
surrounding air. He used as a first approximatfon to the Tongitudinal

velocity profile in the mixing layer

- 13/2
UZ =(1 -n )

where n' = (r - rI)/(ro - rI) and r is the radial distance (rI_: r < ro),
r is the radius of the potential core, and L is the jet radius.

7. Abramovich, G. N., The Theory of Turbulent Jets, M.I.T. Press,
Cambridge, Mass., 1963, pp. 177-208.

Abramovich presented formulas for the core region and developed
region of the jet. He employed for the velocity profile in the mixing

layer surrounding the core the empirical relation
_ = (1. n3/242
U, = U, [1 - (1- n9)“]

where n = (ro - r)/(r0 - rI) and r 1s the radial distance (rI_j r < ro),
ri{ is the radius of the potential core, and "o is the jet radius. This
relation agreed quite closely with experimental data. Abramovich showed

that the velocity profiles in the fully developed region were affine,
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the increase in the thickness or width of the submerged jet (rO - rI)
was equal to the axial distance (z) times a constant, and the centerline
velocity of the jet in the fully developed region was inversely pro-
portional to z. In addition, for the transition he concluded that one
may assume that the equal velocity 1ines in the transition region were
extensions of the equal velocity lines of the potential core region of
the jet.

8. Howarth, L., "Concerning the Velocity and Temperature Distributions

in Plane and Axially Symmetrical Jets," Proc. Cambridge Phil. Soc.,
London, Vol. 34, Pt. 2, 1938, pp. 185-203.

Howarth made calculations of the velocity profile for the developed
region of an axisymmetric jet. He employed Taylor's mixing length for
his calculations. Assuming the eddy velocities of the jet were isotropic
he obtained results equivalent to employing Prandtl's mixing length.
Assuming Taylor's mixing length was homogeneous, he obtained results
equivalent to employing Taylor's modified vorticity transfer theory.
Pressure gradients, radial components of velocity, and derivatives of
radial components of velocity with respect to fhe axial direction, were

considered negligible for all calculations.

9. Mcklroy, G. E., "Air Flow at Discharge of Fan-Pipe Lines in Mines-
Part II-Effect of Size and Shape of Pipe and of Adjacent Walls on
Velocity and Entrainment Ratios," Rept. of Invest. No. 3730, Nov.
1943, Bureau of Mines, U.S. Dept. of Int.

McElroy conducted an experimental investigation and suggested the
following simple approximate formula for entrainment in the developed

region of the jet

E,' =CZ/D
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where Em' = (Q - Qo)/Q0 s the ratio of the quantity of entrained air
in the air stream at any cross section, Q - Qo’ to the quantity dis-
charged Qo and is called the entrainment ratio, Z is the distance from
the orifice, D is the diameter of the round Jet orifice, and C is a
constant (about .35). He stated among a number of conclusions:

(1) The velocity at any point in the air stream and the
amount of entrained air in the stream at any section vary
directly with the discharge velocity.

(2) Conditions that increase centerline velocity ratios
generally decrease entrainment ratios and vice versa.

(3) Centerline velocity ratios vary with region. In the
potential core region they are essentially constant. In the
transition region, they decrease as the square root of the
distance; in the developed region, they decrease directly
with distance.

(4) The angle of expansion of the developed jet appears
to be almost 24°,

(5) Velocity distributions vary with regions. In the
mixing layer of the core region, the relation of the mean
velocity to maximum velocity changes rapidly with distance.

In the transition and developed regions, mean velocities
probably approximate 40 percent of the maximum velocities.

(6) Entrainment ratios vary with regions. Analyses of
the experimental data show continuously increasing entrainment

ratios with increasing axfal distance.
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10. Tuve, 6. L. and Priester, G. B., "The Control of Air Streams in
Large Spaces," Trans. ASHVE, Vol. 50, 1944, p. 153.

Tuve and Priester conducted an experimental investigation. They
concluded that the maximum air velocity at any cross section of the air
stream beyond 25 diameters downstream varies approximately as follows:

(1) directly proportional to the exit velocity,
(2) directly proportional to the diameter of the outlet, and
(3) inversely proportional to the distance from the outlet.

On the basis of an effective outlet area, they obtained an equation

for entrainment ratio

2
0.785 k | /Re 6
f=QT8 K} / +22Tan | - 1.0
R 1 /Ae[ 0.785 7]

where
K = constants of proportionality (tabulated)
R = ratio of maximum velocity to average velocity at any cross
section (range 2.4 to 3.0)
@ = average spreading angle of the jet (22.50 to 25.40)
7 = axial distance from outlet

Ae

effective outlet area

11. Squire, H. B., and Trouncer, J., "Round Jets in a General Stream,"
Tech. Rept. No. 1974, Jan. 1944, British Aeron. Research Council

Squire and Trouncer conducted a mathematical analysis of an axi-
symmetric jet with a secondary stream. Howevér, within this analysis
they included the case for a secondary stream of zero velocity. They
examined the flow in the potential core region and the developed region

separately and then fitted the solutions together. They determined
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the inflow induced by the jet based upon employing cosine distributions
for the longitudinal velocity profiles. For the mixing layer and the
developed region, the respective relations were

U, = (Uj/z)(l - COS 7 n) [mixing layer]

U, = (Uc/2)[1 + cos (= r/ro)] [developed region]

where UZ is the Tongitudinal velocity, Uj is the exit velocity of the
jet, Uc is the centerline velocity in the developed region, n = (ro
-r)/(ry,-r;) and r is the radial position (ry<r< ro)s rp is the
inside radius of the mixing layer, and o is the outside radius of the
Jet. In addition, they made a determination of inflow velocity by
assuming a system of sinks along the jet axis.

12. Cleeves, U. and Boelter, L.M.K., "Isothermal and Non-Isothermal

Air Jet Investigations," Chem. Engr. Progr., Vol. 43, 1947,
pp. 123-134.

Cleeves and Boelter conducted an experimental investigation. They
concluded that the transverse distribution of the axial component of
velocity (UZ) in the developed region can be approximately correlated
by using a dimensionless group. This group was obtained from the

transfer of momentum in the jet, that {s UZ/UC versus r/r%, where r%

is the radial position r at UZ/Uc = 0.5 and Ue is the centerline velocity

at the radfal position.
13. Ribner, H. S., “Field of Flow about a Jet and Effect of Jets on
Stability of Jet Propelled Airplanes," NACA Wartime Report L-213,
(ARC L6C13, 1946).
Ribner conducted a mathematical analysis of an axially symmetric
Jet with a secondary flow. He investigated the induced flow effects
on stability and trim of an aircraft as the jet passes near the tail

surfaces. His anaiysis was only appiicabie to the deveioped jet and
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he ignored velocity components induced parallel to the jet axis. For
the spreading of the jet near the origin, he obtained a linear relation-
ship with the axial distance Z. Far from the origin, he obtained an
expression for jet spreading as the one-third power of the axial dis-
tance. In addition, he concluded that the jet-induced flow inclination
varies nearly inversely as the radial distance from the jet axis within
the region between the jet boundary and twice the radius of the jet
boundary at distances greater than 8 orifice diameters downstream of

the jet exit.

14. Liepmann, H. W. and Laufer, J., "Investigations on Free Turbulent
Mixing," NACA TN 1257, Aug. 1947.

Liepmann and Laufer conducted an analytical investigation of two-
dimensional free turbulent mixing. They concluded that the mixing
length theories had lost much of their value in that the main results

of these theories could be obtained by dimensional reasoning.

15. Hinze, J. 0. and Van Der Hegge Zijnen, B. G., "Transfer of Heat and
Matter in the Turbulent Mixing Zone of an Axially Symmetrical Jet,"
Appl. Sci. Res., Vol. Al, 1948,

Hinze and Van Der Hegge Zijnen made measurements of the radial
distribution of the mean values of the axial component of velocity, the
temperature, and gas concentration. They compared these results with
previous investigators and found that theories based on a constant
coefficient of shearing stress across the jet flow gave the best agree-
ment with measured radial velocity distribution in a central zone of
the jet.

16. Albertson, M. L., Dai, Y. B., Jensen, R. A., and Rouse, H.,

"Diffusion of Submerged Jets," Proc. of Amer. Soc. of Civil Engr.,
Dec. 1948.
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Albertson, et al., derived the approximate characteristics of the
mean flow pattern for flow from slots and orifices. Experimental data
were used to justify the analytical results and provide the empirical
constants. In agreement with other investigators they found it un-
necessary to make any assumption as to the distribution of turbulence
to obtain an approximate mean velocity distribution.

17. Corrsin, S., and Uberoi, M. S., "Further Experiments on the Flow
and Heat Transfer in a Heated Turbulent Air Jet," MACA TN 1865,
1949,

Corrsin and Uberoi conducted an experiment on a heated jet issuing
in still ambient fluid. They suggested that useful results in shear
flow problems are obtainable with less difficulty by use of integrated
equations of motion and reasonable guesses for the velocity profile.
One conclusion they made was up to a local maximum density ratio,
p=/p min of about 1.3, simple geometrical similarity still exists in
the developed region, within the accuracy of measurements. The minimum
density at a section of the jet was denoted by p min and p~ was the
density of the receiving medium. In addition, they concluded that
the pressure and temperature profile functions are basically the
same as in the constant density jet up to p» / pmin = 1.3.

18. Corrsin, S., and Kistler, A. L., "Free Stream Boundaries of
Turbulent Flows," NACA Rept. 1244, 1955,

Corrsin and Kistler completed an experimental and theoretical study
of the free stream boundary separating the turbulent fluid from non-
turbulent fluid. Their suggested theoretical model gave constant mean
vorticity at the boundary, local vorticity production, and a uniform

suction (induced) velocity. Experimentally they determined for the
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round jet that the mean velocity at the boundary is chiefly radially
inward. The angle of spread for the half-cone of the developed region

was determined to be 10.8° (no-wall).

19. Phillips, 0. M., "The Irrotational Motion Outside a Free Turbulent
Boundary," Proc. Cambridge Phil. Soc., Vol. 51, 1955, pp. 220-229.

Phillips analytically considered the irrotational motion of an
infinite fluid when the normal velocity across a plane is a stationary
random function of position. He postulated conditions which corres-

ponded closely to the motion outside a free turbulent boundary.

20. Stewart, R. W., "“Irrotational Motion Associated with Free Turbulent
Flows," J. Fluid Mech., Vol. 1, 1956, pp. 593-606.

Stewart conducted a theoretical examination of the irrotational
motion external to a self preserving turbulent wake and jet. He found
a mean flow towards the center of the jet and pointed out that it is
possible for the vorticity free fluid between bulges of turbulent fluid
to obtain the mean velocity of the turbulent fluid. However, he con-
cluded that this was a very short range effect and the motion in the
external region can be considered irrotational. From similarity consid-
erations, Stewart expressed the mean flow near the axisymmetric jet

'], where ¢, o are the colatitude angle and the

boundary as U¢ = Cp
radius in a spherical coordinate system with the jet exit located

at the origin and directed along the z axis. For a jet emerging nor-
mally through an infinite plane baffle plate, he found that the velocity

potential ¢ can be expressed by

¢ = C tan ¢, 2n (o sin ¢)
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where b = the half cone angle containing all of the turbulent region
of the jet (about 12.5°).

21. Miller, D. R. and Comings, E. V., "Static Pressure Distribution in
the Free Turbulent Jet," J. Fluid Mech., Vol. 3, 1957, pp. 1-16.

Miller and Comings made measurements of mean velocity, turbulent
stress, and static pressure in the mixing layer of a Jet of air issuing
from a sTot (2-D) into still air. Appreciable deviations from constant
pressure conditions were found. They obtained negative static pressure
readings everywhere in the mixing layer except in the potential core

wedge.

22. Ricou, F. P. and Spalding, D. B., “Measurements of Entrainment by

Axisymmetrical Turbulent Jets," J. Fluid Mech., Vol. 11, 1961,

pp. 21-32.

Ricou and Spalding made measurements of entrainment by means of
a porous-walled, cylindrical chamber. The flow rate through.the porous
wall was adjusted until no axial pressure gradients could be detected.
The entrained fluid as a result of the radial inflow was then presumed
to be equal to that of a free jet. For the fully developed jet they
obtained a relationship for the mass entrainment as a function of axial
position. As in previous work by other investigators, they had to
determine a numerical constant (K] of Equation (35)). Their experimental
value was 0.282 which was within the range of values 0.22 to 0.404,
determined by earlier investigators.
23. MWygnanski, I., "The flow Indueed by Two-Dimensional and Axisymmetric

Turbulent Jets Issuing Normally from an Infinite Plane Surface,"
Aeron. Quart., Vol. XV, 1964, pp. 373-380.

Wygnanski made an analytical investigation of turbulent jets.

The pressure distribution on the surface from which the jet was issuing
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was determined. In his analysis, he replaced the jet with a line of

sinks with varifable strength. His results agfeed with the experimental

data he presented.

24. Gentry, C. L. and Margason, R. J., "Jet-Induced L1ft Losses on VTOL

Configurations Hovering In and Out of Ground Effect," NASA TN
D-3166, Feb. 1966.

Gentry and Margason conducted an experimental investigation of
pressure distribution on a plate from which a jet flow was exhausting.
The case where the plate was flush with a large wall and the case
where the plate was exposed to the atmosphere on both sides were
studied. Pressure coefficients on the plate were measured in both
cases. In comparing their results for the large wall with those of
Wygnanski, they show that Wygnanski's data is about 25 percent less.

In general, many mathematical analysis and experimental studies
of jets issuing from nozzles with diameters ranging from 0.102 to 20
inches and with velocities ranging from 13 to 1000 ft/sec have been
made. For the developed region, using the concept of similarity,
theories for mean velocity distributions give about the same picture.
However, they yield a velocity distribution which is too sharp an apex
on the jet axis in comparison with experimental results. As {is to be
expected, near the jet boundary comparison of the analytical velocity
profile with the experimentally determined distribution show a devia-

tion from the measured distribution.
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Derivation of the Equations for the Aerodynamic

Field of an Axisymmetric Jet

This Appendix contains derivations of the equations forvdetennining

the aerodynamic velocity field for an axisymmetric jet according to the

method which make use of the Stokes potentials.

The derfivations are for

a semi-infinite domain where Green's function is given by 2/R. Starting

from Equation (15)

- > >
U= UST + Ep
where
G = (v, x E ) x R dt
st Im 11;3'1
1
and

4_1 2+.+
Ep = - K*;I' v (R) U] dS]
S

-’
Since the flow is axisymmetric (V] x Uy =@

>

for UST can be written as

- 2.9 1. xR
U = 1 81 "ol dt
st 4n R3 1

T

o1 1g1)>

(15)

the equation
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For the geometry of Fig. 11, noting that 6 may be put equal to zero

without loss of generality, R can be written as

-+ -+

-
R = (r cos 8 - r]) 1r1 - r sin o, 101 + (z—z]) 121

>

The source point coordinate system is the appropriate system for the
volume integration. Substituting this result into the equation for
-+

UST yields

Ugp = 3 dr,

I R
T

which can be separated into r and z components in the field point

coordinate system.

2n o T
U - ] ] cos 91 Qe-l (Z"Z-I) r1 dr-l dZ-| de]
Str  &n P3
0 - 0
2n g "
9 201 (r]-r cos 6]) ir. d. do
Usez =~ a7 3 ry dry dzy 44,
0 ¥-=¥
Making use of the identity that
] R
V 2 -
RO
-
the equation for Ep may be written as
> > -+ ->
] R
Ep 5o (530 U] dS1
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Using the geometry of Fig. 12, noting that 6 may again be put equal to
zero, R can be written as

R = (r cos 6y - r]) irl - rsin 0 ie] +z iz]

Substituting this result into equation for Ep along with Uj for

-+ -»>
U] * n yields

-+ -+ -+

-+ U (rcos 8, - ry) iy -rsine, i., + 2z i
: z"if 17 ") i 1 1o 21
p 2w R3

S

1

Separating the above relation into r and z components yields

2m ar
U, 1 (r-ry cos 6,)
e 1 1
Eor 2'rrS S 3 ry dry doy

090 R
2T ar
U.z 1r
= a1
Enz 2nj j 3 4y 48y
0 90
Consider next the integral over 61 for USrr
2n
g cos e] dO]
0 (a-b cos 81)3/2
where a = rz + r% + (z-z])2 and b = 2rr]

Let

m de
1
I, =2 IS
1 S _ 3/2 RIGINAL PAGE
. (a-b cos 6]) (())F POOR QUAL]_TY

and
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=2 372
0 (a-b cos e])

then

L-b I ﬂ o
al,- = 2
12 o (a-b cos 91)1/2

Solving this relation for 12, the integral over 85 for USTr‘ yields

™ ®
I. = _2_2 de ] - 2 __..._(.j_e_]_....-
2 b 0 (a-b cos 61)3/2 b 0 (a-b cos 0]{T77

These integrals may be evaluated in terms of complete elliptic integral

funct1ons.24 Thus,
n
de
]
= E (A,k)
SO (a-b cos 91)3/2 EgE
where
g=2//2a%D, k® = 2b/(a + b)
and

A= sin'] /,b (1-cos 6])/k2(a-b cos 0])

Substituting the value for Ch in the relation for A yields A = sin']
1=x/2. Thus, E (A,k) = E (n/2, k) = E (k) a complete elliptic

integral of the second kind. Now, substituting for g, one obtains

2a S" de, _ _4a E (k)
b Jo (a-b cos 91)3/2 b (a-b) /2% b
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Similarly,
mn
2 ds, _ Ak (k)
b 0 (a-b cos e])V2 b/ a+b

where K (k) is a complete elliptic integral of the first kind. Sub-
stituting these results for the right side of the equation for I2 yields

4 a
I, = E (k) - K (k
2 b/—a—_t_){a'b ) ”l

Likewise integrating over 8, for USTZ with

K do, " cos 6, d,
Ip=2 377 " 2 AR/
0 (a-b cos 0]) 0 (a-b cos 0])

yields
I

E (k) - —2—— [2-E (k) - K (k)]

_ 4
2 V/a+b (a-b) b/a+b b

Substituting the respective results into the integrand of the equations

for UStr and UStz’ yields
Qe (Z“Z]) rz + r2 + (z-2z )2
Str  2awr s /(r+ r])z + (Z-Z])z (r_r._l)z + (2-21)2
E (k) - K (k) dry dz, (40)
1 "o, réorg + (2-2))°
USTZ E - .2-; 2 JZ
S /(T'l' ?'])2 + (Z-Z] )2 (r-r]) ¥ (Z-Z])
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E (k) - K (k) 1 dry dz] (41)

In order to obtain Equations (42) and (43), the equations for Epr

2n ofy 2
1 ry cos 6,
0 Jo (a-b cos 61)3/2

and Epz are rewritten as

;i: 2n Srl ry dry deg ;1
E_= -
A o (a-b cos e])372 "

0

u.z f2TeN ry dry de,
o 372
0

0 (a-b cos 91)

Integrating over B1» yields

U, " rz-r%-z2
Epr=;l ——— E (k) + K (k) | dry
r /?r + rl)2 s 2 | (rm)" *z (42)
2 U,z r
€z =~ s ] e oy (43)
P r /?r + r.l)2 4 g2 Llr-ry)= + 2%
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APPENDIX C

Algorithms for Complete E1liptic Functions

The following algorithm computes the complete elliptic integral of

the first kind with modulus klz.

t
K(k) = {[(0.032024666t + 0.054544409)t + 0.097932891]A+

1.3862944} - " {[(0.010944912t + 0.060118519)t +

0.12475074]t + 0.5} 1In(t)

vhere t = 1 - k2

The following algorithm computes the complete eiliptic integral of
the second kind with modulus k]%

E(k) = {[0.040905094t + 0.085099193)t + 0.44479204]t +
1.0} - {[(0.01382999t + 0.08150224)t + 0.24969795]t} in(t)

where t = 1 - k2



